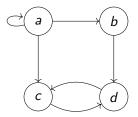
### On The Cost Of Simulating A Parallel Boolean Automata Networks By A Sequential One

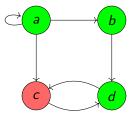
Florian Bridoux Thesis first year student in Marseille University

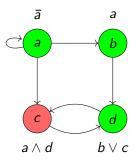
Collaborator: Sylvain Sené (LIF) et Guillaume Theyssier (I2M), Adrien Richard (I3S), Pierre Guillon (I2M), Kévin Perrot (LIF)

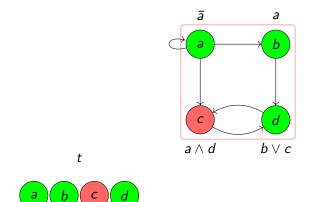
#### BAN $\simeq$ Dynamic systems with *n* Boolean variable

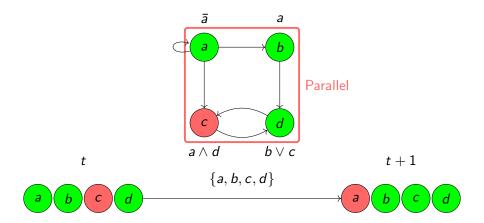
- Conventional Representative Models for Complex Systems :
  - Neural networks [McCulloch & Pitts 1943]
  - Gene networks [Kauffman 1969, Thomas 1973]
  - Social Networks [Taramasco & Demongeot 2011]
  - Epidemic Diffusion Networks [Demongeot 2013]
  - etc.
- Calculation models :
  - Boolean cellular automata with Bounded space
  - Memoryless computation, Network coding [Gadouleau 2011,2012]

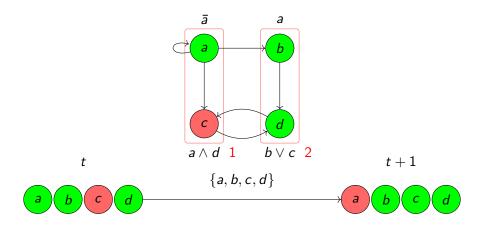


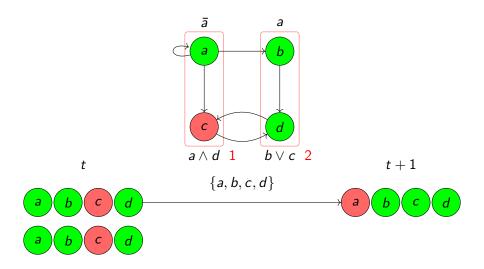


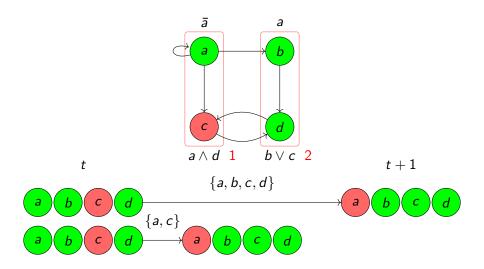


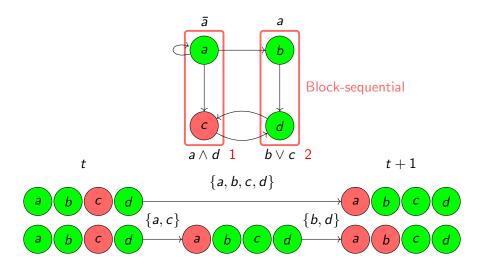




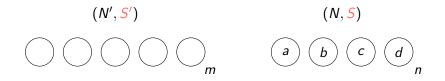


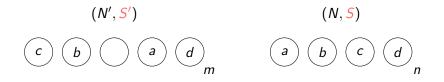


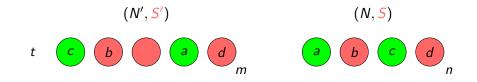


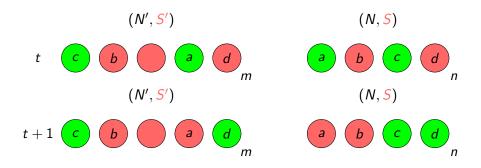


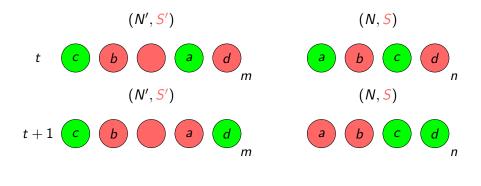
(*N*′, <u>*S*′</u>) m





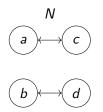


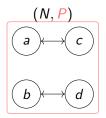


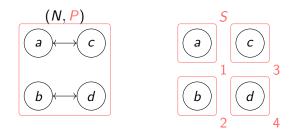


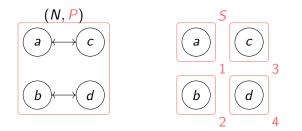
 $(N', S') \triangleright (N, S)$ 

Florian BRIDOUX On The Cost Of Simulating A Parallel Boolean Automata Networks By A Sequential One 2017 4/13

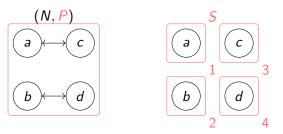


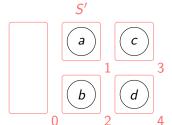




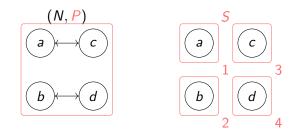


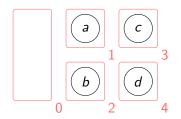
 $\kappa(N, S)$  is the minimum additional size of (N', S') such that :



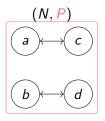


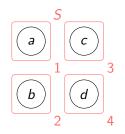
 $\kappa(N, S)$  is the minimum additional size of (N', S') such that : • S' is "like" S for a, b, c, d

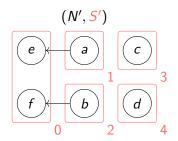




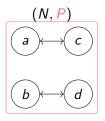
 $\kappa(N, S)$  is the minimum additional size of (N', S') such that : • S' is "like" S for a, b, c, d•  $(N', S') \triangleright (N, S)$ 

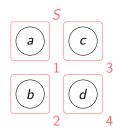


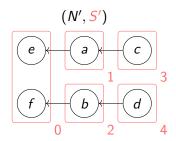




 $\kappa(N, S)$  is the minimum additional size of (N', S') such that : • S' is "like" S for a, b, c, d•  $(N', S') \triangleright (N, S)$ 

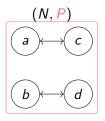


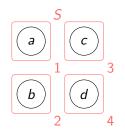


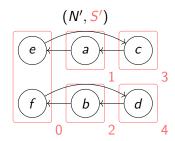


 $\kappa(N, S)$  is the minimum additional size of (N', S') such that : • S' is "like" S for a, b, c, d•  $(N', S') \triangleright (N, S)$ 

• 
$$(N', S') \triangleright (N, S)$$

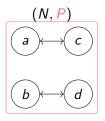


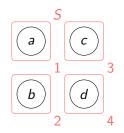


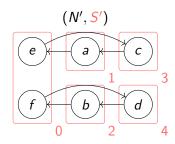


 $\kappa(N, S)$  is the minimum additional size of (N', S') such that : • *S'* is "like" *S* for *a*, *b*, *c*, *d* 6

• 
$$(N', S') \triangleright (N, S)$$





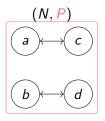


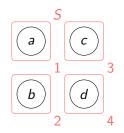
 $\kappa(N, S)$  is the minimum additional size of (N', S') such that : • S' is "like" S for a, b, c, d

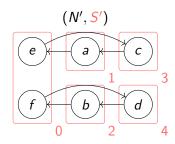
• 
$$(N', S') \triangleright (N, S)$$

 $\kappa(N, S) \leq 2$ 

Florian BRIDOUX



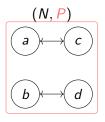


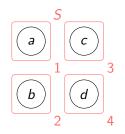


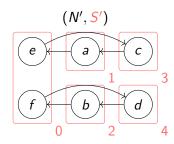
 $\kappa(N, S)$  is the minimum additional size of (N', S') such that : • S' is "like" S for a, b, c, d

• 
$$(N', S') \triangleright (N, S)$$

 $\kappa(N,S) = 2$ 







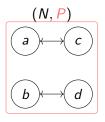
 $\kappa(N, S)$  is the minimum additional size of (N', S') such that : • S' is "like" S for a, b, c, d•  $(N', S') \triangleright (N, S)$  $\kappa_n$  is the max  $\kappa(N, S)$  with |N| = n

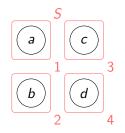
$$\kappa(N, S) = 2$$

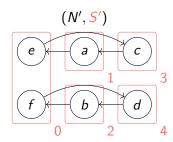
Florian BRIDOUX

On The Cost Of Simulating A Parallel Boolean Automata Networks By A Sequential One 2017

5/13



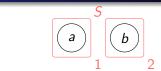




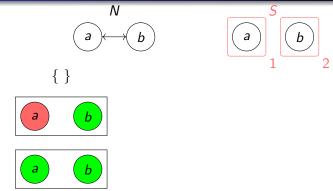
 $\kappa(N, S) \text{ is the minimum additional}$ size of (N', S') such that : • S' is "like" S for a, b, c, d•  $(N', S') \triangleright (N, S)$  $\kappa_n$  is the max  $\kappa(N, S)$  with |N| = n

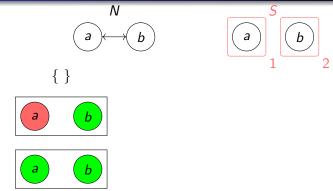
 $\kappa(N, S) = 2$  and thus  $\kappa_4 \geq 2$ 

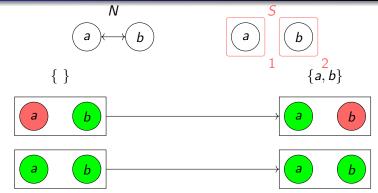


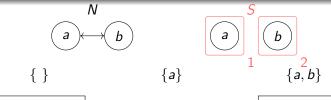


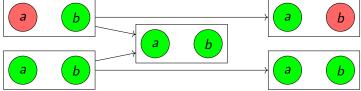


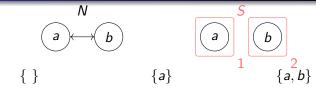


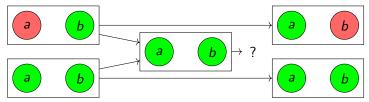




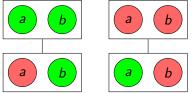


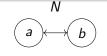


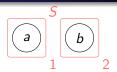




#### Confusion graph $G_{N,S}$ :

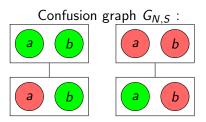






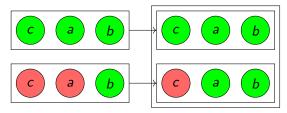








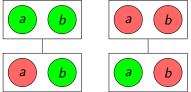
2

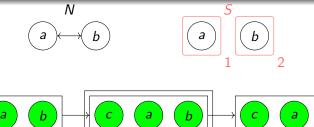


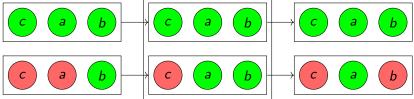
Ν

а

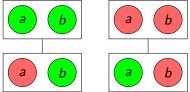
#### Confusion graph $G_{N,S}$ :

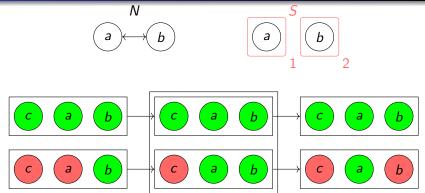




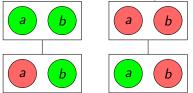


#### Confusion graph $G_{N,S}$ :

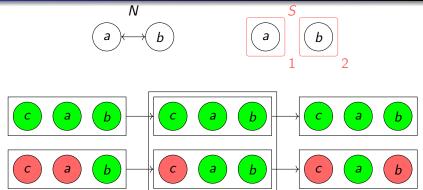




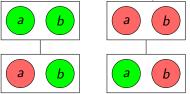
#### Confusion graph $G_{N,S}$ :



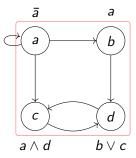
#### Lemma. $\kappa_{N,S} \geq \lceil \log_2(\chi(G_{N,S})) \rceil$

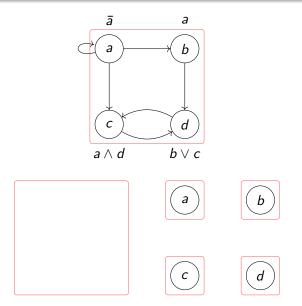


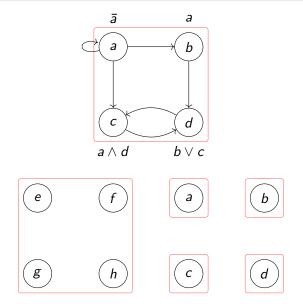
#### Confusion graph $G_{N,S}$ :

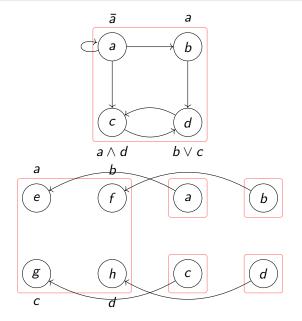


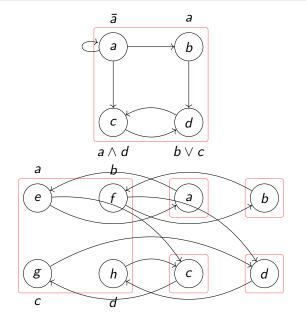
#### **Theorem**. $\kappa_{N,S} = \lceil \log_2(\chi(G_{N,S}))) \rceil$

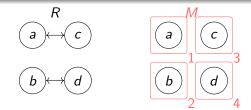


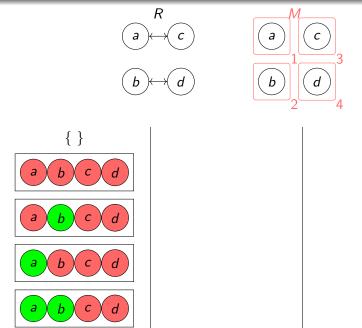


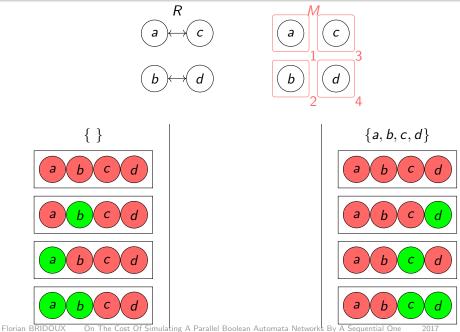


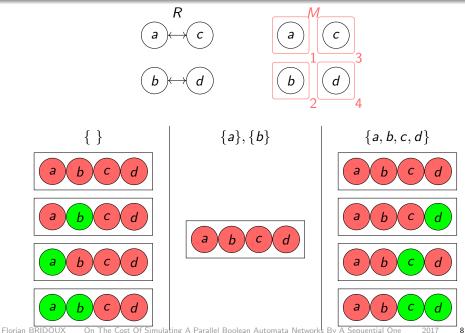




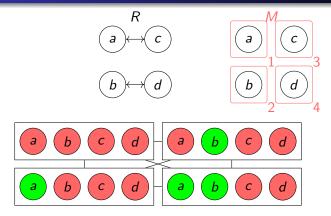


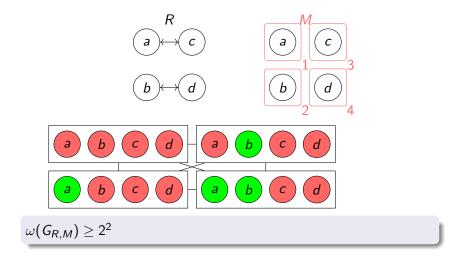


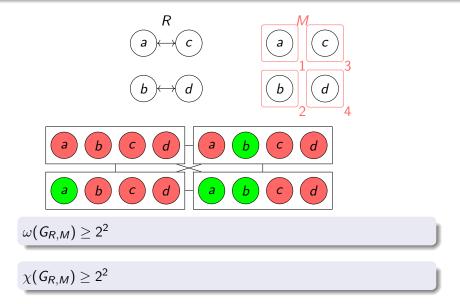


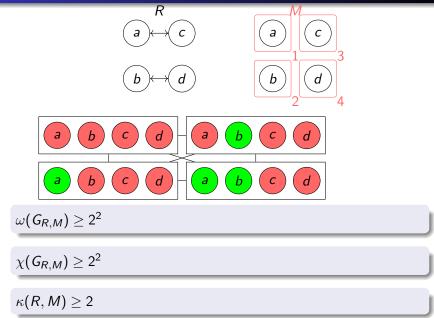


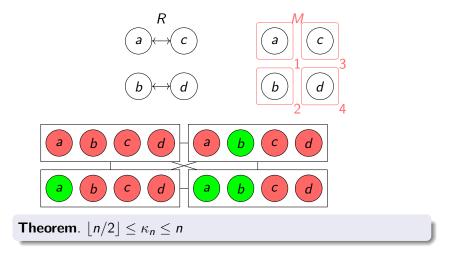
On The Cost Of Simulating A Parallel Boolean Automata Networks By A Sequential One

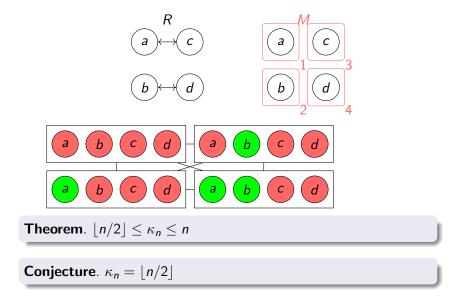


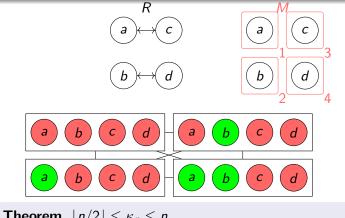








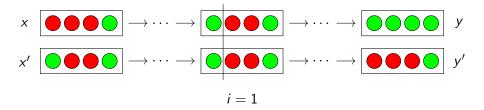


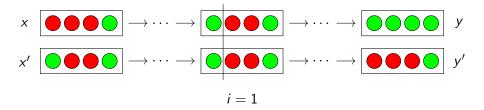


**Theorem**.  $|n/2| \leq \kappa_n \leq n$ 

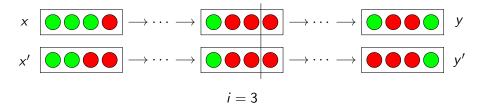
**Conjecture**.  $\kappa_n = |n/2|$ 

**Theorem**.  $\omega(G_{R,M}) \leq \lfloor n/2 \rfloor$ 

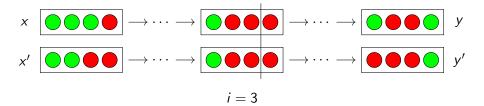




if 
$$i \leq n/2$$
 then  $x_{[n/2,n]} = x'_{[n/2,n]}$ 

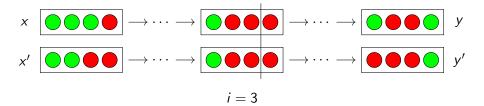


if 
$$i \leq n/2$$
 then  $x_{[n/2,n]} = x'_{[n/2,n]}$ 



$$\text{if } i \leq n/2 \text{ then } x_{[n/2,n]} = x_{[n/2,n]}'$$

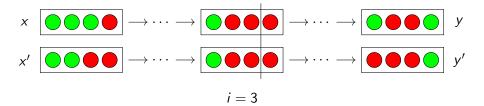
if 
$$i \ge n/2$$
 then  $y_{[0,n/2]} = y'_{[0,n/2]}$ 



$$\text{if } i \leq n/2 \text{ then } x_{[n/2,n]} = x'_{[n/2,n]}$$

if 
$$i \ge n/2$$
 then  $y_{[0,n/2]} = y'_{[0,n/2]}$ 

 $d(x) \leq 2^{n/2+1}$ 



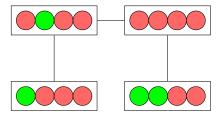
if 
$$i \leq n/2$$
 then  $x_{[n/2,n]} = x'_{[n/2,n]}$ 

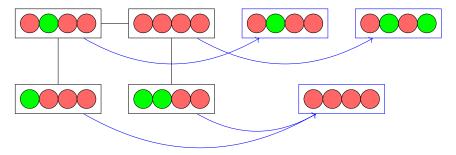
if 
$$i \ge n/2$$
 then  $y_{[0,n/2]} = y'_{[0,n/2]}$ 

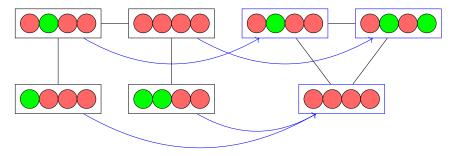
 $d(x) \leq 2^{n/2+1}$ 

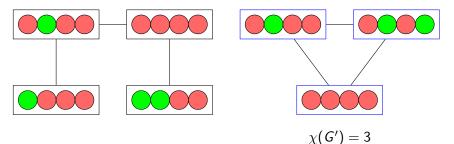
#### **Theorem**. If *N* is bijective then $\kappa(N, S) \le n/2 + 1$

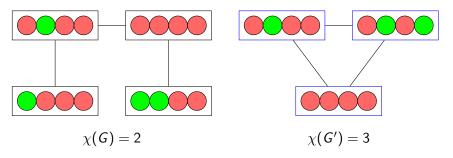
Confusion graph G:

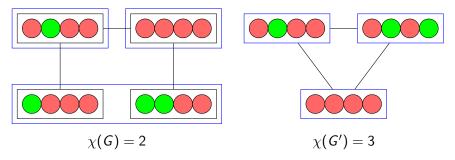


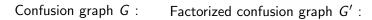


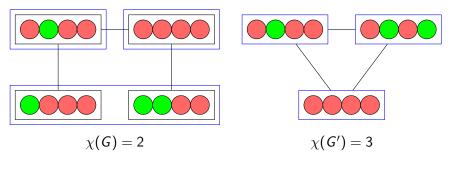




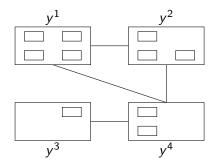


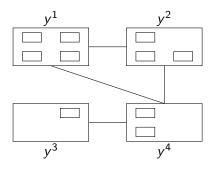


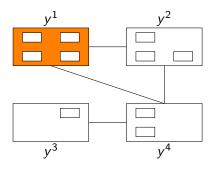


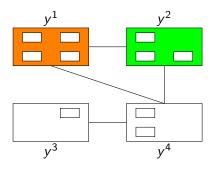


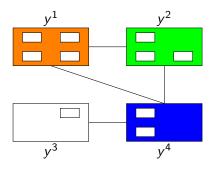
Lemma.  $\chi(G) \leq \chi(G')$ 

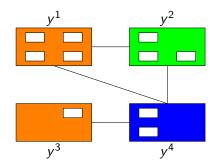












We sort the images by decreasing size of Fiber :  $|A(y^1)| \le |A(y^2)| \le \cdots \le |A(y^k)|$ . We use a greedy coloration algorithm.

Let k' such that  $color(y^{k'}) = maxColor$ . We have :

- maxColor  $\leq k'$ .
- maxColor  $\leq D(y^{k'})$

We sort the images by decreasing size of Fiber :  $|A(y^1)| \le |A(y^2)| \le \cdots \le |A(y^k)|$ . We use a greedy coloration algorithm.

Let k' such that  $color(y^{k'}) = maxColor$ . We have :

- maxColor  $\leq k'$ . But  $|A(y^{k'})| \times k \leq 2^n$ . Thus, maxColor  $\leq k' \leq 2^n/|A(y^{k'})|$ .
- maxColor  $\leq D(y^{k'})$ .

We sort the images by decreasing size of Fiber :  $|A(y^1)| \le |A(y^2)| \le \cdots \le |A(y^k)|$ . We use a greedy coloration algorithm.

Let k' such that  $color(y^{k'}) = maxColor$ . We have :

• maxColor  $\leq k'$ . But  $|A(y^{k'})| \times k \leq 2^n$ . Thus, maxColor  $\leq k' \leq 2^n |A(y^{k'})|$ .

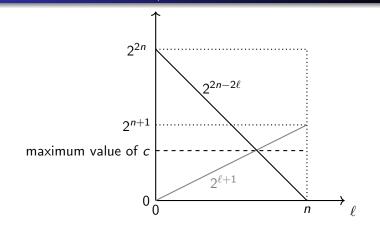
• maxColor  $\leq D(y^{k'})$ . But  $D(y^{k'}) \leq |A(y^{k'})| \times 2^{n/2+1}$ .

Let k' such that  $\operatorname{color}(y^{k'}) = \max \operatorname{Color}$ . We have : •  $\max \operatorname{Color} \leq k'$ . But  $|A(y^{k'})| \times k \leq 2^n$ . Thus,  $\max \operatorname{Color}$ 

- maxColor  $\leq k'$ . But  $|A(y^{\kappa})| \times k \leq 2^{n}$ . Thus, maxColor  $\leq k' \leq 2^{n} |A(y^{k'})|$ .
- maxColor  $\leq D(y^{k'})$ . But  $D(y^{k'}) \leq |A(y^{k'})| \times 2^{n/2+1}$ .

The maximum value is reach when  $|A(y^{k'})| \times 2^{n/2+1} = 2^n |A(y^{k'})|$ . That is to say, when  $|A(y^{k'})| = 2^{n/2+1}$ .

**Theorem**.  $\kappa_n \leq 2n/3 + 2$ 



We can get a better upper bound if we sort the images by decreasing degree.

**Theorem**.  $\kappa_n \leq 2n/3 + 2$ 

Principal results :

- $\kappa_n = \log(chi(G)).$
- $\lfloor n/2 \rfloor \leq \kappa_n \leq 2n/3 + 2.$
- $\omega(G_{R,M}) \leq \lfloor n/2 \rfloor$ .
- If N is bijective then  $\kappa(N, S) \leq n/2 + 1$ .

Ongoing work :

Currently studying  $\kappa_n^-$ : like  $\kappa_n$  but with no imposed order for S'. We have some results :

- $\kappa_n^- \leq \kappa_n$
- $\kappa_{\mathbf{n}}^{-} \leq \tau$
- $\kappa_n^- \ge n/14$ .