# Symbolic reductions of gene network models

#### Gilles Bernot Jean-Paul Comet Emilien Cornillon

Lab. I3S, Université de Nice-Sophia-Antipolis, France

## january, $3^{\rm rd}$ 2017







## Introduction

- Abstraction and simplification within models
  - stochastic, differential, discrete, hybrid frameworks
  - abstraction  $\equiv$  essence of modelling activity (to grasp the key elements and their roles)
  - pragmatical fact : combinatoric explosion
- Thomas' modelling frameworks
- If parameters are all known
  - Naldi's method for computing reduced networks
  - Preservation of dynamical properties

### • Reversing the problem

- Is it possible to infer parameters
- from the parameters of the simplified one?
- $\Rightarrow$  define symbolic reductions

## Outline



- 2 Naldi's reductions of network specifications
- 3 Extended reductions of network specifications

### 4 Conclusion

Gene network specifications





Set of Variables

Marseille 2017

Bernot/Comet/Cornillon Reduction of gene network models

▲ 同 ▶ ▲ 三

B> B

## Gene network specifications



Set of Variables Set of multiplexes : each multiplex is equiped with a formula Regulations : which variable does act on which one?

Image: A math a math

## Gene network specifications



Set of Variables Set of multiplexes : each multiplex is equiped with a formula Regulations : which variable does act on which one? Set of parameters : towards which value is attracted a variable?

< 1 →

## Gene network specifications



Set of Variables

Set of multiplexes : each multiplex is equiped with a formula

Regulations : which variable does act on which one?

Set of parameters : towards which value is attracted a variable? + environment parameters

Image: A math a math

## Gene network specifications



Set of Variables

Set of multiplexes : each multiplex is equiped with a formula

Regulations : which variable does act on which one?

Set of parameters : towards which value is attracted a variable ? + environment parameters Axioms : memorize the relationships between original model and derived models

< D > < A > < B > < B >

Giving a value to each parameter : a realization

- A realization  $\equiv$  substitution  $\sigma: X \rightarrow \mathbb{N}$  s.t.
  - $\sigma(K_{v,\omega}) \leq b_v$  for all  $v \in V$  and  $\omega \in S^-(v)$
  - $\sigma(\psi)$  is satisfied in  $\mathbb N$  for all  $\psi \in Axioms$

## Gene network dynamics : as usual...

The transition graph  $(\zeta, T_{\sigma})$  :

- the nodes are the states :  $\eta: V \to \mathbb{N}$
- the resources  $\rho_{\sigma}(\mathbf{v},\eta) \equiv$  the set of predecessors whose formulas are evaluated to true
- $\bullet$  transitions depend on substitution  $\sigma$



## Gene network dynamics : 3 useful formulas

**1** The set of resources of v is  $\omega$ :

$$\Phi_{\mathbf{v}}^{\omega} \equiv \left(\bigwedge_{m \in \omega} \varphi_{m}\right) \land \left(\bigwedge_{m \in S^{-}(\mathbf{v}) \smallsetminus \omega} \neg \varphi_{m}\right)$$

2 The variable v can increase :

$$\Phi^+_v \quad \equiv \quad igwedge _{\omega \subset S^-(v)} (\Phi^\omega_v \Longrightarrow {\cal K}_{v,\omega} > v)$$

The variable v can decrease :

$$\Phi_{v}^{-} \equiv \bigwedge_{\omega \subset S^{-}(v)} (\Phi_{v}^{\omega} \Longrightarrow K_{v,\omega} < v)$$

Intuitions Reduced network Some results

Naldi's reductions of network specifications (intuition)

- if v is no auto-regulated :
  - v is supposed to go immediately to its focal value







Intuitions Reduced network Some results

Naldi's reductions of network specifications (intuition)

- if v is no auto-regulated :
  - v is supposed to go immediately to its focal value







Intuitions Reduced network Some results

Suppressing a variable in specif. S = (V, X, M, E, Ax)

 $\mathbf{R}_{\mathbf{v}}^{\mathbf{S}}(\mathbf{m})$  where *m* is a multiplex : the formula is reduced *via*  $\mathbf{R}(())$ . multiplexes which have as unique target *v*, are suppressed.

- $R_v^S(E)$ : the same except the edges towards v
- - A gene network  $N = (S, \sigma)$  being given, the *v*-reduction of N is the gene network  $\mathbf{R}_{\mathbf{v}}^{\mathbf{S}}(\mathbf{S}, \sigma) = (\mathbf{R}_{\mathbf{v}}^{\mathbf{S}}(\mathbf{S}), \sigma \circ (\mu_{\mathbf{v}}^{S})^{-1}).$
  - Transition Graph :  $\mathbf{R}^{\mathbf{S}}_{\mathbf{v}}(\eta)$  is the restriction of  $\eta$  to  $\mathbf{R}^{\mathbf{S}}_{\mathbf{v}}(\mathbf{V})$

Intuitions Reduced network Some results

#### Lemma 1 (Preservation of formulas' evaluation)

Let  $\eta, \sigma$  s.t.  $\eta(\mathbf{v}) = \sigma(K_{\mathbf{v},\rho(\mathbf{v},\eta)})$ , then  $(\eta \models \sigma(\varphi)) \Leftrightarrow \mathbf{R}^{\mathbf{S}}_{\mathbf{v}}(\eta) \models \sigma'(\mathbf{R}^{\mathbf{S}}_{\mathbf{v}}(\varphi)).$ 

• if  $v \notin var(\varphi)$ , we have  $(\eta \models \sigma(\varphi)) \Leftrightarrow (\mathbf{R}^{\mathbf{S}}_{\mathbf{v}}(\eta) \models \sigma'(\mathbf{R}^{\mathbf{S}}_{\mathbf{v}}(\varphi)))$ • if  $v \in var(\varphi)$ ,

$$\begin{aligned} \mathbf{R}^{\mathbf{S}}_{\mathbf{v}}(\eta) &\models \sigma'(\mathbf{R}^{\mathbf{S}}_{\mathbf{v}}(\varphi)) &\Leftrightarrow \eta \models \sigma'(\mathbf{R}^{\mathbf{S}}_{\mathbf{v}}(\varphi)) \quad \text{because } \mathbf{v} \notin \mathbf{R}^{\mathbf{S}}_{\mathbf{v}}(\varphi) \\ &\Leftrightarrow \eta \models \sigma'(\bigwedge_{\omega \subset S^{-}(v)} \mu^{S}_{v}(\Phi^{\omega}_{v} \Rightarrow \varphi[v \leftarrow K_{v,\omega}])) \\ \text{using } \sigma' &= \sigma \circ (\mu^{S}_{v})^{-1} \quad \Leftrightarrow \quad \eta \models \sigma(\bigwedge_{\omega \subset S^{-}(v)} \Phi^{\omega}_{v} \Rightarrow \varphi[v \leftarrow K_{v,\omega}]) \\ \text{using } \eta(\mathbf{v}) &= \sigma(K_{v,\rho(v,\eta)}) \quad \Leftrightarrow \quad \eta \models \sigma(\bigwedge_{\omega \subset S^{-}(v)} \Phi^{\omega}_{v} \Rightarrow \varphi) \\ &\Leftrightarrow \quad \eta \models \sigma(\varphi) \end{aligned}$$

Marseille 2017

э

くロ と く 同 と く ヨ と 一

Intuitions Reduced network Some results

#### Lemma 2 (Resources Preservation)

## Let $\eta, \sigma, v$ such that $\eta(v) = \sigma(K_{v,\rho(v,\eta)})$ and let u a variable s.t. $u \neq v$ . $\rho_{\sigma}(u, \eta) = \rho_{\sigma'}(u, \mathsf{R}_{v}^{\mathsf{S}}(\eta))$



Image: A math a math

Intuitions Reduced network Some results

#### Lemma 2 (Resources Preservation)

Let  $\eta, \sigma, v$  such that  $\eta(v) = \sigma(K_{v,\rho(v,\eta)})$  and let u a variable s.t.  $u \neq v$ .  $\rho_{\sigma}(u, \eta) = \rho_{\sigma'}(u, \mathsf{R}_{v}^{\mathsf{S}}(\eta))$ 

#### Lemma 3 (Transition Preservation)

Let 
$$\eta, \sigma, v$$
 such that  $\eta(v) = \sigma(K_{v,\rho(v,\eta)})$  and let  $\eta \to \eta'$ .  
if  $\mathbf{R}_{v}^{\mathsf{S}}(\eta) \neq \mathbf{R}_{v}^{\mathsf{S}}(\eta')$ , we have  $\mathbf{R}_{v}^{\mathsf{S}}(\eta) \to \mathbf{R}_{v}^{\mathsf{S}}(\eta')$ 



Intuitions Reduced network Some results

#### Lemma 4 (Path preservation)

The set of paths "saturating first v" of  $N = (S, \sigma)$  is in canonical bijection with the set of paths of  $N' = (\mathbf{R}_{\mathbf{v}}^{\mathbf{S}}(\mathbf{S}), \sigma \circ (\mu_{\mathbf{v}}^{S})^{-1})$ .



Intuitions Reduced network Some results

## Preservation of dynamical properties

#### Lemma 5

Each attractor contains at least a cycle "saturating first v" (trivial)





I = ►

complex attractors with cycle saturating first **v** 

#### Theorem (preservation of dynamical properties)

- preservation of stable states
- preservation of stable cycles
- the reduction of each complex attractor contains at least a cycle

Intuitions Extended reductions of network specifications Folding formulas Suppression of a threshold

# Extended reductions of network specifications (intuition)

- if v is a self-regulation free variable, v can be viewed as a relay for the transmission of information. v can be "replaced" by its focal value (which depends only on the other variables).
- if v is self-regulated at threshold  $\theta$ , on either side of the threshold, v can be "replaced" by its focal value (which depends only on the other variables).

One can merge state s - 1 and  $s \ (s \neq \theta)$ , making the assumption that inside these two values, v elvolves immediately.



Intuitions Extended reductions of network specifications Folding formulas Suppression of a threshold



if η(v) < s − 1 in the reduced network,</li>
 v behaves as v in the initial network

# if η(v) ≥ s in the reduced network, v behaves as v + 1 in the initial network if η(v) = s − 1, it depends on Φ<sup>+</sup><sub>v</sub> :

- if  $\Phi_v^+$  is satisfied, v behaves as v + 1 in the initial network
- if  $\Phi_v^+$  is not satisfied, v behaves as v in the initial network

Intuitions Extended reductions of network specifications Folding formulas Suppression of a threshold

(日)

# Folding a formula

• if 
$$\eta(v) \ge s$$
 (folded) or  $(\eta(v) = s - 1$  (folded) and  $\Phi_v^+$  (initial)) :

$$\text{init}, \eta \models \varphi \qquad \equiv \qquad \text{folded}, \eta' \models \varphi[\mathsf{v} \leftarrow \mathsf{v} + 1]$$

3 if 
$$\eta(v) < s-1$$
 (folded) or  $(\eta(v) = s-1$  (folded) and  $\neg \Phi_v^+$  (initial) :

init, 
$$\eta \models \varphi \equiv \text{folded}, \eta' \models \varphi$$

Definition of  $\operatorname{fold}_{\mathsf{v},\mathsf{s}}^{\mathsf{S}}(\varphi) \equiv \psi_1 \wedge \psi_2$  where

$$\begin{array}{rcl} \psi_1 &=& ((v \geq s) & \lor & (v = s - 1 \land \ \mu_v^S(\Phi_v^+))) \ \Rightarrow \ \mu_v^S(\varphi[v \leftarrow v + 1]) \\ \psi_2 &=& ((v < s - 1) \ \lor & (v = s - 1 \land \neg \mu_v^S(\Phi_v^+))) \ \Rightarrow \ \mu_v^S(\varphi) \end{array}$$

э

Intuitions Extended reductions of network specifications Folding formulas Suppression of a threshold

Suppressing a threshold in specif. S = (V, X, M, E, Ax)

The reduced network :

- $\bullet \ \mathbf{fold}_{\mathbf{v},\mathbf{s}}^{\mathbf{S}}(\mathbf{V}) = V$
- $\textbf{ old}_{\mathbf{v},\mathbf{s}}^{\mathbf{S}}(\mathbf{X}) = X \quad \cup \quad \{ \mathcal{K}_{\mathbf{v},\omega}^{\mathbf{S}} | \omega \subset S^{-}(\mathbf{v}) \}$
- fold<sup>S</sup><sub>v,s</sub>(E) = E (the same edges)
- **5** fold<sup>S</sup><sub>v,s</sub>(Ax) =  $\mu_v^S(Ax) \cup \{ folded_s(K_{v,\omega}, \mu_v^S(K_{v,\omega})) \mid \omega \subset S^-(v) \}$ where

 $\mathit{folded}_{s}(t',t) \equiv (t < s \land t' = t) \lor (t \geqslant s \land t' = t-1)$ 

• Transition Graph :  $\mathbf{fold}_{\mathbf{v},\mathbf{s}}^{\mathbf{S}}(\eta) \dots$ 

Intuitions Extended reductions of network specifications Folding formulas Suppression of a threshold

# Lemma 6 (Preservation of formulas' evaluation, $b_{v} > 1$ ) Let $\eta_{0}, \sigma$ be a state and a realization, and let $\eta$ be defined by $\eta = \eta_{0} \begin{bmatrix} v \leftarrow \begin{cases} \eta_{0}(v) + 1 & if \eta_{0}(v) = s - 1 \land \sigma(K_{v,\rho(v,\eta)}) \ge s \\ \eta_{0}(v) - 1 & if \eta_{0}(v) = s \land \sigma(K_{v,\rho(v,\eta)}) \le s - 1 \\ \eta_{0}(v) & otherwise \end{bmatrix}$ We have : $(\eta \models \sigma(\varphi)) \Leftrightarrow \operatorname{fold}_{v,s}^{S}(\eta) \models \sigma'(\operatorname{fold}_{v,s}^{S}(\varphi)).$

- if  $v \notin var(\varphi)$ , we have  $(\eta \models \sigma(\varphi)) \Leftrightarrow (\mathbf{fold}_{v,s}^{\mathsf{S}}(\eta) \models \sigma'(\mathbf{fold}_{v,s}^{\mathsf{S}}(\varphi)))$
- if  $v \in var(\varphi)$ , two cases...

Intuitions Extended reductions of network specifications Folding formulas Suppression of a threshold

< ロ > < 同 > < 三 > < 三 >

• Case A and B : A Be

 $\psi_1$  is trivially true, then

$$\mathbf{fold}^{\mathbf{S}}_{\mathbf{v},\mathbf{s}}(\eta) \models \sigma'(\mathbf{fold}^{\mathbf{S}}_{\mathbf{v},\mathbf{s}}(\varphi)) \quad \Leftrightarrow \quad \eta \models \sigma'(\mu^{\mathbf{S}}_{\mathbf{v}}(\varphi))$$

Using Axioms, we deduce  $K_{\mathbf{v},\omega}^{S} = K_{\mathbf{v},\omega}$ 

$$\mathsf{fold}_{\mathsf{v},\mathsf{s}}^{\mathsf{S}}(\eta)\models\sigma(\mathsf{fold}_{\mathsf{v},\mathsf{s}}^{\mathsf{S}}(\varphi)) \iff \eta\models\sigma(\varphi)$$

• Case C and D :  $\psi_2$  is trivially true, then

 $\mathbf{fold}^{\mathbf{S}}_{\mathbf{v},\mathbf{s}}(\eta) \models \sigma'(\mathbf{fold}^{\mathbf{S}}_{\mathbf{v},\mathbf{s}}(\varphi)) \ \Leftrightarrow \ \eta \models \sigma'(\mu^{\mathbf{S}}_{\mathbf{v}}(\varphi[\mathbf{v} \leftarrow \mathbf{v}+1]))$ 

Using Axioms, we deduce  $K_{v,\omega}^{\mathcal{S}} = K_{v,\omega} + 1$ 

$$\mathsf{fold}_{\mathsf{v},\mathsf{s}}^{\mathsf{S}}(\eta) \models \sigma'(\mathsf{fold}_{\mathsf{v},\mathsf{s}}^{\mathsf{S}}(\varphi)) \iff \eta \models \sigma(\varphi)$$

Intuitions Extended reductions of network specifications Folding formulas Suppression of a threshold

Image: A math a math

#### Lemma 7 (Resources Preservation, $b_v > 1$ )

Let  $\eta_0, \sigma, \mathbf{v}$  and  $\eta$  defined as previously. Let u a variable.  $\rho_{\sigma}(u, \eta) = \rho_{\sigma'}(u, \mathbf{fold}_{\mathbf{v}, \mathbf{s}}^{\mathbf{S}}(\eta))$ 



Intuitions Extended reductions of network specifications Folding formulas Suppression of a threshold

#### Lemma 7 (Resources Preservation, $b_v > 1$ )

Let  $\eta_0, \sigma, \mathbf{v}$  and  $\eta$  defined as previously. Let u a variable.  $\rho_{\sigma}(u, \eta) = \rho_{\sigma'}(u, \mathbf{fold}_{\mathbf{v}, \mathbf{s}}^{\mathbf{S}}(\eta))$ 

#### Lemma 8 (Transition Preservation, $b_v > 1$ )

Let  $\eta_0, \sigma, v$  and  $\eta$  defined as previously. Let  $\eta \to \eta'$ . If  $\mathbf{fold}_{v,s}^{\mathbf{S}}(\eta) \neq \mathbf{fold}_{v,s}^{\mathbf{S}}(\eta')$ , we have  $\mathbf{fold}_{v,s}^{\mathbf{S}}(\eta) \to \mathbf{fold}_{v,s}^{\mathbf{S}}(\eta')$ .



Intuitions Extended reductions of network specifications Folding formulas Suppression of a threshold

#### Lemma 9 (Paths' preservation, $b_v > 1$ )

The set of paths "saturating first v" of  $N = (S, \sigma)$  is in canonical bijection with the set of paths of  $N' = (\mathbf{fold}_{v,s}^S(S), \sigma')$ .



Proof of lemma 9 :

- With each path "saturating first v", one associates a path in N' (trivial)
- With each path in N', one associates the unique path "saturating first v" in N : Let be  $\eta\to\eta'\to\eta''$

• 
$$\exists a, b, c, d \in \mathbf{R}_{\mathbf{v}}^{\mathbf{S}^{-1}}(\eta) \times \mathbf{R}_{\mathbf{v}}^{\mathbf{S}^{-1}}(\eta') \times \mathbf{R}_{\mathbf{v}}^{\mathbf{S}^{-1}}(\eta') \times \mathbf{R}_{\mathbf{v}}^{\mathbf{S}^{-1}}(\eta'')$$
  
s.t.  $\begin{cases} a \to b \\ c \to d \end{cases}$  and  $c(v) = b(v) + 1$  if  $\sigma(K_{v,...}) > b(v)...$ 

- in  $\mathbf{R}^{\mathbf{S}^{-1}}_{\mathbf{v}}(\eta'),$  because the resources do not change, there exists a unique path from b to c
- there exists a unique path from  $a \in \mathbf{R}_{\mathbf{v}}^{\mathbf{S}^{-1}}(\eta)$  towards d.

• □ > • □ > • □ > ·

Intuitions Extended reductions of network specifications Folding formulas Suppression of a threshold

Preservation of dynamical properties

#### Lemma 10

Each attractor contains at least a cycle "saturating first v" (trivial)

#### Theorem (preservation of dynamical properties)

- preservation of stable states
- preservation of stable cycles
- the folding of each complex attractor contains at least a cycle

## Global approach



э

イロト イボト イヨト イヨト

# Global approach



э

イロト イボト イヨト イヨト

# Global approach



э

イロト イボト イヨト イヨト

# Global approach



э

ヘロト ヘヨト ヘヨト ヘヨト

# Global approach



э

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト ・

# Conclusion

- Multiplex formulas code the situations where a regulation takes place even if the direct regulator has been abstracted
  - $\Rightarrow$  Non proliferation of parameters
- Axioms allow the parameterization of the environment they memorize the different foldings of parameters during threshold suppression.
- Use of constraints solver