Negative cycles and fixed points in Boolean networks

Julio Aracena*
Depto. de Ingeniería Matemática \& CI2MA, Universidad de Concepción, Chile

Joint work with
Lilian Salinas*
Universidad de Concepción, Chile
\&

Adrien Richard
Laboratoire I3S, CNRS \& Université de Nice-Sophia Antipolis

Workshop Réseaux d'interactions: fondements et applications à la biologie.

[^0]
Motivation of Boolean networks in biology

A gene regulatory network consists of a set of genes, proteins, small molecules, and their mutual interactions. Elements:

- Vertex $=$ A gene or a gene product.
- States $=1$ (activated), 0 (inactivated).
- Interaction Graph $=$ Interaction of genes and genes products each other.
- Activation function $=$ Regulation function.
- Updating $=$ parallel (in the most cases).
- Fixed points $=$ Cellular phenotypes.

(Aracena J. et al. Journal of Theoretical Biology, 2006.)

Boolean Networks

A Boolean network is a system of a set of n interacting Boolean variables $\left\{x_{i}\right\}_{i}$, which evolve, in a discrete time, according to a predefined rule.

Boolean Networks

A Boolean network is a system of a set of n interacting Boolean variables $\left\{x_{i}\right\}_{i}$, which evolve, in a discrete time, according to a predefined rule.

Definition

A Boolean network $N=(G, F)$ is defined by:

Boolean Networks

A Boolean network is a system of a set of n interacting Boolean variables $\left\{x_{i}\right\}_{i}$, which evolve, in a discrete time, according to a predefined rule.

Definition

A Boolean network $N=(G, F)$ is defined by:

- $G=(V, A)$ is a directed graph (interaction graph) where $|V|=n$.

Boolean Networks

A Boolean network is a system of a set of n interacting Boolean variables $\left\{x_{i}\right\}_{i}$, which evolve, in a discrete time, according to a predefined rule.

Definition

A Boolean network $N=(G, F)$ is defined by:

- $G=(V, A)$ is a directed graph (interaction graph) where $|V|=n$.
- $F=\left(f_{v}\right)_{v \in V}:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$, is a global transition function (dynamics),

Boolean Networks

A Boolean network is a system of a set of n interacting Boolean variables $\left\{x_{i}\right\}_{i}$, which evolve, in a discrete time, according to a predefined rule.

Definition

A Boolean network $N=(G, F)$ is defined by:

- $G=(V, A)$ is a directed graph (interaction graph) where $|V|=n$.
- $F=\left(f_{v}\right)_{v \in V}:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$, is a global transition function (dynamics),
- $f_{v}:\{0,1\}^{n} \rightarrow\{0,1\}$ is a local activation function, where $\forall v \in V, \forall x \in\{0,1\}^{n}, f_{v}(x)=F(x)_{v}$.

Boolean Networks

A Boolean network is a system of a set of n interacting Boolean variables $\left\{x_{i}\right\}_{i}$, which evolve, in a discrete time, according to a predefined rule.

Definition

A Boolean network $N=(G, F)$ is defined by:

- $G=(V, A)$ is a directed graph (interaction graph) where $|V|=n$.
- $F=\left(f_{v}\right)_{v \in V}:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$, is a global transition function (dynamics),
- $f_{v}:\{0,1\}^{n} \rightarrow\{0,1\}$ is a local activation function, where $\forall v \in V, \forall x \in\{0,1\}^{n}, f_{v}(x)=F(x)_{v}$.
- f_{v} depends on variable x_{u} if and only if $(u, v) \in A$, i.e. $f_{v}(x)=f_{v}\left(x_{u}:(u, v) \in A\right)$.

Example of Boolean network

- $F:\{0,1\}^{4} \rightarrow\{0,1\}^{4}$
- $f_{1}(x):=x_{3} \wedge x_{4}$
- $f_{2}(x):=x_{1} \wedge x_{3}$
- $f_{3}(x):=\left(x_{1} \wedge x_{2}\right) \vee \bar{x}_{4}$
- $f_{4}(x):=\bar{x}_{2}$
- $F(x)=\left(f_{1}(x), f_{2}(x), f_{3}(x), f_{4}(x)\right)$

G: Interaction graph

Dynamical behavior of Boolean networks

Given $N=(G, F)$ a Boolean network, the value of each variable x_{v} of N on time $t+1$ is given by:

$$
x_{v}(t+1)=f_{v}(x(t)) .
$$

Thus, the dynamical behavior of N is given by:

$$
\forall x(t) \in\{0,1\}^{n}, x(t+1)=F(x(t))
$$

A vector $x \in\{0,1\}^{n}$ is said to be a fixed point of N if $F(x)=x$. The set of fixed points of (G, F) is denoted by $\mathrm{FP}(G, F)$.

Example. $n=3$ and $F=\left(f_{1}, f_{2}, f_{3}\right)$ defined by
$\left\{\begin{array}{cc|c} & x & F(x) \\ & 000 & 000 \\ f_{1}(x)=x_{2} \vee x_{3} & 001 & 110 \\ f_{2}(x)=\overline{x_{1}} \wedge x_{3} & 010 & 101 \\ f_{3}(x)=\overline{x_{3}} \wedge\left(x_{1} \oplus x_{2}\right) & 011 & 110 \\ & 100 & 001 \\ & 101 & 100 \\ & 110 & 100 \\ & 111 & 100\end{array}\right.$

Dynamics:

Many applications

- Neural networks [McCulloch \& Pitts 1943]
- Gene networks [Kauffman 1969, Tomas 1973]
- Epidemic diffusion, social network, Network Coding, etc

Many applications

- Neural networks [McCulloch \& Pitts 1943]
- Gene networks [Kauffman 1969, Tomas 1973]
- Epidemic diffusion, social network, Network Coding, etc

Natural question: - What can be said on the fixed points of a network according to its interaction graph ?

Boolean networks with signed interaction digraphs (regulatory Boolean networks)

Regulatory Boolean networks

Let (G, F) be a Boolean network, then:

- f_{v} is monotonically increasing on input u if $f_{v}\left(x_{1}, \ldots, x_{u}=0, \ldots, x_{n}\right) \leq f_{v}\left(x_{1}, \ldots, x_{u}=1, \ldots, x_{n}\right)$.

Regulatory Boolean networks

Let (G, F) be a Boolean network, then:

- f_{v} is monotonically increasing on input u if $f_{v}\left(x_{1}, \ldots, x_{u}=0, \ldots, x_{n}\right) \leq f_{v}\left(x_{1}, \ldots, x_{u}=1, \ldots, x_{n}\right)$.
- f_{v} is monotonically decreasing on input u if $f_{v}\left(x_{1}, \ldots, x_{u}=0, \ldots, x_{n}\right) \geq f_{v}\left(x_{1}, \ldots, x_{u}=1, \ldots, x_{n}\right)$.

Regulatory Boolean networks

Let (G, F) be a Boolean network, then:

- f_{v} is monotonically increasing on input u if

$$
f_{v}\left(x_{1}, \ldots, x_{u}=0, \ldots, x_{n}\right) \leq f_{v}\left(x_{1}, \ldots, x_{u}=1, \ldots, x_{n}\right) .
$$

- f_{v} is monotonically decreasing on input u if

$$
f_{v}\left(x_{1}, \ldots, x_{u}=0, \ldots, x_{n}\right) \geq f_{v}\left(x_{1}, \ldots, x_{u}=1, \ldots, x_{n}\right) .
$$

Example. $f_{v}\left(x_{1}, x_{2}, x_{3}\right)=\left(\bar{x}_{1} \vee \bar{x}_{3}\right) \wedge\left(x_{1} \vee x_{2}\right)$ is non monotonically increasing nor monotonically decreasing on x_{1}.

Regulatory Boolean networks

Let (G, F) be a Boolean network, then:

- f_{v} is monotonically increasing on input u if

$$
f_{v}\left(x_{1}, \ldots, x_{u}=0, \ldots, x_{n}\right) \leq f_{v}\left(x_{1}, \ldots, x_{u}=1, \ldots, x_{n}\right) .
$$

- f_{v} is monotonically decreasing on input u if

$$
f_{v}\left(x_{1}, \ldots, x_{u}=0, \ldots, x_{n}\right) \geq f_{v}\left(x_{1}, \ldots, x_{u}=1, \ldots, x_{n}\right)
$$

Example. $f_{v}\left(x_{1}, x_{2}, x_{3}\right)=\left(\bar{x}_{1} \vee \bar{x}_{3}\right) \wedge\left(x_{1} \vee x_{2}\right)$ is non monotonically increasing nor monotonically decreasing on x_{1}.

Definition

(G, F) is said to be a regulatory Boolean network (RBN) if each f_{v} is either monotonically increasing or monotonically decreasing on each input (unate function).

Regulatory Boolean networks

Let (G, F) be a Boolean network, then:

- f_{v} is monotonically increasing on input u if

$$
f_{v}\left(x_{1}, \ldots, x_{u}=0, \ldots, x_{n}\right) \leq f_{v}\left(x_{1}, \ldots, x_{u}=1, \ldots, x_{n}\right)
$$

- f_{v} is monotonically decreasing on input u if

$$
f_{v}\left(x_{1}, \ldots, x_{u}=0, \ldots, x_{n}\right) \geq f_{v}\left(x_{1}, \ldots, x_{u}=1, \ldots, x_{n}\right)
$$

Example. $f_{v}\left(x_{1}, x_{2}, x_{3}\right)=\left(\bar{x}_{1} \vee \bar{x}_{3}\right) \wedge\left(x_{1} \vee x_{2}\right)$ is non monotonically increasing nor monotonically decreasing on x_{1}.

Definition

(G, F) is said to be a regulatory Boolean network (RBN) if each f_{v} is either monotonically increasing or monotonically decreasing on each input (unate function).

Examples of RBNs: threshold Boolean networks, monotone networks, AND-OR-NOT networks, etc.

Signed interaction graph

Let $(G=(V, A), F)$ be a regulatory Boolean network, then

- we can define a sign function $\sigma: A \rightarrow\{+1,-1\}$ by

$$
\sigma(i, j)= \begin{cases}+1 & \text { if } f_{j} \text { is monotonically increasing on input } i \\ -1 & \text { otherwise } .\end{cases}
$$

Signed interaction graph

Let $(G=(V, A), F)$ be a regulatory Boolean network, then

- we can define a sign function $\sigma: A \rightarrow\{+1,-1\}$ by

$$
\sigma(i, j)= \begin{cases}+1 & \text { if } f_{j} \text { is monotonically increasing on input } i \\ -1 & \text { otherwise } .\end{cases}
$$

- (G, σ) is called a signed digraph.

Signed interaction graph

Let $(G=(V, A), F)$ be a regulatory Boolean network, then

- we can define a sign function $\sigma: A \rightarrow\{+1,-1\}$ by

$$
\sigma(i, j)= \begin{cases}+1 & \text { if } f_{j} \text { is monotonically increasing on input } i \\ -1 & \text { otherwise }\end{cases}
$$

- (G, σ) is called a signed digraph.
- The sign of a cycle c of (G, σ), denoted by $\sigma(c)$, is equal to the product of the signs of the arcs of c.

Signed interaction graph

Let $(G=(V, A), F)$ be a regulatory Boolean network, then

- we can define a sign function $\sigma: A \rightarrow\{+1,-1\}$ by

$$
\sigma(i, j)= \begin{cases}+1 & \text { if } f_{j} \text { is monotonically increasing on input } i \\ -1 & \text { otherwise }\end{cases}
$$

- (G, σ) is called a signed digraph.
- The sign of a cycle c of (G, σ), denoted by $\sigma(c)$, is equal to the product of the signs of the arcs of c.
- A cycle c of G is said to be positive if $\sigma(c)=+1$ and negative if $\sigma(c)=-1$.

Example of positive and negative cycles

$\sigma\left(c_{1}: 1,3,1\right)=-1\left(c_{1}\right.$ is a negative cycle $)$ and $\sigma\left(c_{2}: 4,3,2,4\right)=1\left(c_{2}\right.$ is a positive cycle).

The roles of positive and negative cycles in gene regulatory networks

Thomas' conjectures (Thomas 1981)

The presence of a positive (resp. negative) circuit is a necessary condition for the presence of multiple stable states (resp. a cyclic attractor).

The roles of positive and negative cycles in gene regulatory networks

Thomas' conjectures (Thomas 1981)

The presence of a positive (resp. negative) circuit is a necessary condition for the presence of multiple stable states (resp. a cyclic attractor).

These conjectures have been proved for differential systems (Plathe et al. 1995; Snoussi 1998; Gouzé 1998; Cinquin and Demongeot 2002; Soulé 2003, 2006) and discrete systems (Aracena et al. 2004; Remy and Ruet 2006; Richard and Comet 2007; Aracena 2008; Remy et al. 2008; Richard 2010).

Positive and negative cycles and fixed points in Boolean networks

Problem: Given a signed digraph (G, σ) with $|V(G)|=n$, to determine

$$
\phi(G, \sigma)=\max \left\{\operatorname{card}(\operatorname{FP}(G, F)) \mid F:\{0,1\}^{n} \rightarrow\{0,1\}^{n} \text { a function }\right\} .
$$

Positive and negative cycles and fixed points in Boolean networks

Problem: Given a signed digraph (G, σ) with $|V(G)|=n$, to determine

$$
\phi(G, \sigma)=\max \left\{\operatorname{card}(\operatorname{FP}(G, F)) \mid F:\{0,1\}^{n} \rightarrow\{0,1\}^{n} \text { a function }\right\} .
$$

Example.

Positive and negative cycles and fixed points in Boolean networks

Problem: Given a signed digraph (G, σ) with $|V(G)|=n$, to determine

$$
\phi(G, \sigma)=\max \left\{\operatorname{card}(\operatorname{FP}(G, F)) \mid F:\{0,1\}^{n} \rightarrow\{0,1\}^{n} \text { a function }\right\} .
$$

Example.

$$
\left(P_{4}, \sigma \equiv+1\right):
$$

Positive and negative cycles and fixed points in Boolean networks

Problem: Given a signed digraph (G, σ) with $|V(G)|=n$, to determine

$$
\phi(G, \sigma)=\max \left\{\operatorname{card}(\operatorname{FP}(G, F)) \mid F:\{0,1\}^{n} \rightarrow\{0,1\}^{n} \text { a function }\right\} .
$$

Example.

Positive and negative cycles and fixed points in Boolean networks

Problem: Given a signed digraph (G, σ) with $|V(G)|=n$, to determine

$$
\phi(G, \sigma)=\max \left\{\operatorname{card}(\mathrm{FP}(G, F)) \mid F:\{0,1\}^{n} \rightarrow\{0,1\}^{n} \text { a function }\right\} .
$$

Example.

Positive and negative cycles and fixed points in Boolean networks

Problem: Given a signed digraph (G, σ) with $|V(G)|=n$, to determine

$$
\phi(G, \sigma)=\max \left\{\operatorname{card}(\mathrm{FP}(G, F)) \mid F:\{0,1\}^{n} \rightarrow\{0,1\}^{n} \text { a function }\right\} .
$$

Example.

Positive and negative cycles and fixed points in Boolean networks

Problem: Given a signed digraph (G, σ) with $|V(G)|=n$, to determine

$$
\phi(G, \sigma)=\max \left\{\operatorname{card}(\mathrm{FP}(G, F)) \mid F:\{0,1\}^{n} \rightarrow\{0,1\}^{n} \text { a function }\right\} .
$$

Example.

Positive and negative cycles and fixed points in Boolean networks

Problem: Given a signed digraph (G, σ) with $|V(G)|=n$, to determine

$$
\phi(G, \sigma)=\max \left\{\operatorname{card}(\mathrm{FP}(G, F)) \mid F:\{0,1\}^{n} \rightarrow\{0,1\}^{n} \text { a function }\right\} .
$$

Example.

Positive feedback vertex set

Positive transversal number

$$
\begin{aligned}
\tau^{+}(G, \sigma):= & \text { minimum size of a set of vertices meeting } \\
& \text { every positive cycle }
\end{aligned}
$$

Positive feedback vertex set

Positive transversal number

$$
\begin{aligned}
\tau^{+}(G, \sigma):= & \text { minimum size of a set of vertices meeting } \\
& \text { every positive cycle }
\end{aligned}
$$

Remark 1. $\tau^{+} \leq \tau$
Remark 2. τ^{+}is invariant under subdivisions of arcs preserving signs

Example of positive feedback vertex set

Example.

Example of positive feedback vertex set

Example.

Example of positive feedback vertex set

Example.

Example of positive feedback vertex set

Example.

Example of positive feedback vertex set

Example.

Example of positive feedback vertex set

Example.

$$
\begin{gathered}
\tau^{+}=1 \\
\tau=1
\end{gathered}
$$

$$
\begin{gathered}
\tau^{+}=2 \\
\tau=3
\end{gathered}
$$

$$
\begin{gathered}
\tau^{+}=1 \\
\tau=2
\end{gathered}
$$

Positive feedback vertex set

Theorem (Aracena, Goles, Demongeot, 2004; Aracena, 2008) $\phi(G, \sigma) \leq 2^{\tau^{+}(G, \sigma)}$ fixed points

Positive feedback vertex set

Theorem (Aracena, Goles, Demongeot, 2004; Aracena, 2008) $\phi(G, \sigma) \leq 2^{\tau^{+}(G, \sigma)}$ fixed points

Remark 1. (G, σ) has only negative cycles $\Rightarrow \tau^{+}=0 \Rightarrow \phi(G, \sigma) \leq 1$.

Positive feedback vertex set

Theorem (Aracena, Goles, Demongeot, 2004; Aracena, 2008)
 $\phi(G, \sigma) \leq 2^{\tau^{+}(G, \sigma)}$ fixed points

Remark 1. (G, σ) has only negative cycles $\Rightarrow \tau^{+}=0 \Rightarrow \phi(G, \sigma) \leq 1$.
Remark 2. If (G, σ) has only negative cycles and G is strongly connected, then $\phi(G, \sigma)=0$.

Positive feedback vertex set

Theorem (Aracena, Goles, Demongeot, 2004; Aracena, 2008)
 $\phi(G, \sigma) \leq 2^{\tau^{+}(G, \sigma)}$ fixed points

Remark 1. (G, σ) has only negative cycles $\Rightarrow \tau^{+}=0 \Rightarrow \phi(G, \sigma) \leq 1$.
Remark 2. If (G, σ) has only negative cycles and G is strongly connected, then $\phi(G, \sigma)=0$.

Remark 3. (G, σ) has no cycles $\Rightarrow \phi(G, \sigma)=1$ (F. Robert, 1986).

Example.

Example.

Example.

Example.

$\phi\left(K_{3}, \sigma_{2}\right)=2 ; \tau^{+}=2$

Example.

Question: Which is the role of the negative cycles regarding the number of fixed points in a RBN?

Example.

Question: Which is the role of the negative cycles regarding the number of fixed points in a RBN?

Example.

Example.

Question: Which is the role of the negative cycles regarding the number of fixed points in a RBN?

Example.

$$
\left(P_{4}, \sigma \equiv+1\right):
$$

Example.

Question: Which is the role of the negative cycles regarding the number of fixed points in a RBN?

Example.

$$
\begin{array}{r}
\left(P_{4}, \sigma \equiv+1\right): 1 \\
\phi\left(P_{4}, \sigma \equiv+1\right)=3
\end{array}
$$

Example.

Question: Which is the role of the negative cycles regarding the number of fixed points in a RBN?

Example.

$$
\begin{aligned}
& \left(P_{4}, \sigma \equiv+1\right): 143 \\
& \left(P_{4}, \sigma\right): 4\left(P_{4}, \sigma \equiv+1\right)=3
\end{aligned}
$$

Example.

Question: Which is the role of the negative cycles regarding the number of fixed points in a RBN?

Example.

Monotone Boolean networks (Boolean networks without negative cycles)

(J. Aracena, A. Richard, L. Salinas. Number of fixed points and disjoint cycles in monotone Boolean networks, SIAM Journal of Discrete Mathematics, 2016. Accepted.)

Boolean networks without negative cycles

Definition

Given a signe digraph (G, σ) and I a subset of vertices of G, the I-switch of (G, σ) is the signed digraph $\left(G, \sigma^{I}\right)$ where σ^{I} is defined by

$$
\forall u v \in A(G), \quad \sigma^{I}(u v)=\left\{\begin{aligned}
\sigma(u v) & \text { if } u, v \in I \text { or } u, v \notin I, \\
-\sigma(u v) & \text { otherwise. }
\end{aligned}\right.
$$

Boolean networks without negative cycles

Definition

Given a signe digraph (G, σ) and I a subset of vertices of G, the I-switch of (G, σ) is the signed digraph $\left(G, \sigma^{I}\right)$ where σ^{I} is defined by

$$
\forall u v \in A(G), \quad \sigma^{I}(u v)=\left\{\begin{aligned}
\sigma(u v) & \text { if } u, v \in I \text { or } u, v \notin I, \\
-\sigma(u v) & \text { otherwise. }
\end{aligned}\right.
$$

Example.

Boolean networks without negative cycles

Definition

Given a signe digraph (G, σ) and I a subset of vertices of G, the I-switch of (G, σ) is the signed digraph $\left(G, \sigma^{I}\right)$ where σ^{I} is defined by

$$
\forall u v \in A(G), \quad \sigma^{I}(u v)=\left\{\begin{aligned}
\sigma(u v) & \text { if } u, v \in I \text { or } u, v \notin I, \\
-\sigma(u v) & \text { otherwise. }
\end{aligned}\right.
$$

Example.

$$
\begin{gathered}
(G, \sigma) \\
\tau^{+}=1
\end{gathered}
$$

$\left(G, \sigma^{I_{1}}\right)$
$I_{1}=\{3\}, \tau^{+}=1$

Boolean networks without negative cycles

Definition

Given a signe digraph (G, σ) and I a subset of vertices of G, the I-switch of (G, σ) is the signed digraph $\left(G, \sigma^{I}\right)$ where σ^{I} is defined by

$$
\forall u v \in A(G), \quad \sigma^{I}(u v)=\left\{\begin{aligned}
\sigma(u v) & \text { if } u, v \in I \text { or } u, v \notin I, \\
-\sigma(u v) & \text { otherwise. }
\end{aligned}\right.
$$

Example.

$$
\begin{gathered}
(G, \sigma) \\
\tau^{+}=1
\end{gathered}
$$

$\left(G, \sigma^{I_{1}}\right)$
$I_{1}=\{3\}, \tau^{+}=1$

$\left(G, \sigma^{I_{2}}\right)$
$I_{2}=\{1,3\}, \tau^{+}=1$

Proposition

$\phi(G, \sigma)=\phi\left(G, \sigma^{I}\right)$ and $\tau^{+}(G, \sigma)=\tau^{+}\left(G, \sigma^{I}\right)$

Proposition

$\phi(G, \sigma)=\phi\left(G, \sigma^{I}\right)$ and $\tau^{+}(G, \sigma)=\tau^{+}\left(G, \sigma^{I}\right)$

Example.

$$
\begin{gathered}
(G, \sigma) \\
\tau^{+}=3
\end{gathered}
$$

Proposition

$\phi(G, \sigma)=\phi\left(G, \sigma^{I}\right)$ and $\tau^{+}(G, \sigma)=\tau^{+}\left(G, \sigma^{I}\right)$

Example.

$$
\begin{gathered}
(G, \sigma) \\
\tau^{+}=3
\end{gathered}
$$

$$
\begin{gathered}
\left(G, \sigma^{I}\right) \\
I=\{1,3,5\} ; \tau^{+}=3
\end{gathered}
$$

Monotone networks

Definition

A Boolean network (G, F) is said to be monotone if

$$
\forall x, y \in\{0,1\}^{n}, x \leq y \Rightarrow F(x) \leq F(y)
$$

where $x \leq y \quad \Longleftrightarrow \quad x_{i} \leq y_{i}$ for all i.

Monotone networks

Definition

A Boolean network (G, F) is said to be monotone if

$$
\forall x, y \in\{0,1\}^{n}, x \leq y \Rightarrow F(x) \leq F(y)
$$

$$
\text { where } x \leq y \quad \Longleftrightarrow \quad x_{i} \leq y_{i} \text { for all } i \text {. }
$$

Remark. (G, F) is monotone $\Longleftrightarrow \forall v \in V(G), f_{v}$ is monotonically increasing $\Longleftrightarrow(G, \sigma)$ has only positive arcs (i.e., $\sigma \equiv+1)$

Monotone networks

Definition

A Boolean network (G, F) is said to be monotone if

$$
\forall x, y \in\{0,1\}^{n}, x \leq y \Rightarrow F(x) \leq F(y)
$$

where $x \leq y \quad \Longleftrightarrow \quad x_{i} \leq y_{i}$ for all i.

Remark. (G, F) is monotone $\Longleftrightarrow \forall v \in V(G), f_{v}$ is monotonically increasing $\Longleftrightarrow(G, \sigma)$ has only positive arcs (i.e., $\sigma \equiv+1)$

Proposition

If G is a strongly connected digraph and (G, σ) has no negative cycles, then $\phi(G, \sigma)=\phi(G, \sigma \equiv+1)$ and $\tau^{+}(G, \sigma)=\tau(G)$

Vertex disjoint cycles

Packing number

$$
\nu(G):=\text { maximum number of vertex-disjoint cycles of } G \text {. }
$$

Vertex disjoint cycles

Packing number

$$
\nu(G):=\text { maximum number of vertex-disjoint cycles of } G \text {. }
$$

Remark. $\quad \nu \leq \tau$

Vertex disjoint cycles

Packing number

$$
\nu(G):=\text { maximum number of vertex-disjoint cycles of } G \text {. }
$$

Remark. $\quad \nu \leq \tau$
Example.

Vertex disjoint cycles

Packing number

$$
\nu(G):=\text { maximum number of vertex-disjoint cycles of } G \text {. }
$$

Remark. $\quad \nu \leq \tau$
Example.

$$
\tau=\nu=1
$$

Vertex disjoint cycles

Packing number

$$
\nu(G):=\text { maximum number of vertex-disjoint cycles of } G \text {. }
$$

Remark. $\quad \nu \leq \tau$
Example.

$$
\tau=\nu=1
$$

Vertex disjoint cycles

Packing number

$$
\nu(G):=\text { maximum number of vertex-disjoint cycles of } G \text {. }
$$

Remark. $\quad \nu \leq \tau$
Example.

$$
\tau=\nu=1
$$

$\nu=2, \tau=4$

Vertex disjoint cycles

Packing number

$$
\nu(G):=\text { maximum number of vertex-disjoint cycles of } G \text {. }
$$

Remark. $\quad \nu \leq \tau$
Example.

Vertex disjoint cycles

Packing number

$$
\nu(\boldsymbol{G}):=\text { maximum number of vertex-disjoint cycles of } G \text {. }
$$

Remark. $\quad \nu \leq \tau$
Example.

$\tau=\nu=1$

$\nu=2, \tau=4$

$\nu=1, \tau=2$

Theorem (Knaster-Tarski, 1928)

If f is monotone then $\operatorname{FP}(f)$ is a non-empty lattice

Theorem (Knaster-Tarski, 1928)

If f is monotone then $\operatorname{FP}(f)$ is a non-empty lattice

Theorem (Aracena-Salinas-Richard, 2016)

If (G, F) is a monotone Boolean network, then $\operatorname{FP}(G, F)$ is isomorphic to a subset $L \subseteq\{0,1\}^{\tau}$ s.t.
(1) L is a non-empty lattice
(2) L has no chains of size $\nu+2$

Proof of Theorem part 2

If $\operatorname{FP}(G, F)$ has a chain of size k then $\nu \geq k-1$

Proof of Theorem part 2

If $\operatorname{FP}(G, F)$ has a chain of size k then $\nu \geq k-1$

$$
\begin{array}{rl}
x^{5}=\mathbf{1} & \mathbf{1}
\end{array} \mathbf{1}
$$

Proof of Theorem part 2

If $\operatorname{FP}(G, F)$ has a chain of size k then $\nu \geq k-1$

$$
\begin{aligned}
& x^{5}=\begin{array}{lllllllllllllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& x^{2}=\begin{array}{llllllllllllllllll}
\mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
\end{aligned}
$$

Proof of Theorem part 2

If $\operatorname{FP}(G, F)$ has a chain of size k then $\nu \geq k-1$

$$
\begin{aligned}
& x^{5}=\begin{array}{lllllllllllll|lllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& x^{2}=\begin{array}{llllllllllllllllll}
\mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
\end{aligned}
$$

Proof of Theorem part 2

If $\operatorname{FP}(G, F)$ has a chain of size k then $\nu \geq k-1$

Thus $\operatorname{FP}(G, F)$ has no chains of length $\nu+2$ and so L

Theorem (Erdős, 1945)

If $X \subseteq\{0,1\}^{n}$ has no chains of size $\ell+1$ then
$|X| \leq$ the sum of the ℓ largest binomial coefficients $\binom{n}{k}$

Theorem (Erdős, 1945)

If $X \subseteq\{0,1\}^{n}$ has no chains of size $\ell+1$ then

$$
|X| \leq \text { the sum of the } \ell \text { largest binomial coefficients }\binom{n}{k}
$$

Corollary

If F is monotone then

$$
|\mathrm{FP}(G, F)| \leq \text { the sum of the } \nu-1 \text { largest }\binom{\tau}{k}+2
$$

Theorem (Erdős, 1945)

If $X \subseteq\{0,1\}^{n}$ has no chains of size $\ell+1$ then

$$
|X| \leq \text { the sum of the } \ell \text { largest binomial coefficients }\binom{n}{k}
$$

Corollary

If F is monotone then

$$
|\mathrm{FP}(G, F)| \leq \text { the sum of the } \nu-1 \text { largest }\binom{\tau}{k}+2
$$

Remark 1. The upper bound is good if ν is small relative to τ.

Theorem (Erdős, 1945)

If $X \subseteq\{0,1\}^{n}$ has no chains of size $\ell+1$ then

$$
|X| \leq \text { the sum of the } \ell \text { largest binomial coefficients }\binom{n}{k}
$$

Corollary

If F is monotone then

$$
|\mathrm{FP}(G, F)| \leq \text { the sum of the } \nu-1 \text { largest }\binom{\tau}{k}+2
$$

Remark 1. The upper bound is good if ν is small relative to τ.

Corollary

$\phi(G, \sigma \equiv+1)=2^{\tau(G)} \Longrightarrow \nu(G)=\tau(G)$

Remark 1. If $\nu(G)=\tau(G)$, then it could be that $\phi(G, \sigma \equiv+1)<2^{\nu}$. Example.

Remark 1. If $\nu(G)=\tau(G)$, then it could be that $\phi(G, \sigma \equiv+1)<2^{\nu}$. Example.

$$
\left(P_{4}, \sigma \equiv+1\right): 1 \longleftrightarrow 2 \leftrightarrows 4
$$

Remark 1. If $\nu(G)=\tau(G)$, then it could be that $\phi(G, \sigma \equiv+1)<2^{\nu}$. Example.

$$
\begin{gathered}
\left(P_{4}, \sigma \equiv+1\right): 1 \longleftrightarrow 2 \longleftrightarrow 4 \\
\nu\left(P_{4}\right)=\tau\left(P_{4}\right)=2
\end{gathered}
$$

Remark 1. If $\nu(G)=\tau(G)$, then it could be that $\phi(G, \sigma \equiv+1)<2^{\nu}$. Example.

$$
\begin{gathered}
\left(P_{4}, \sigma \equiv+1\right): 1 \\
\nu\left(P_{4}\right)=\tau\left(P_{4}\right)=2 \\
\phi\left(P_{4}, \sigma \equiv+1\right)=3<2^{\nu\left(P_{4}\right)}
\end{gathered}
$$

Special packing and ν^{*}

Definition

A special packing of size k is a collection C_{1}, \ldots, C_{k} of disjoints cycles such that for every principal path P from C_{p} to $C_{q}, p \neq q$, there exists a principal path P^{\prime} from C_{q} to the last vertex of P

Special packing and ν^{*}

Definition

A special packing of size k is a collection C_{1}, \ldots, C_{k} of disjoints cycles such that for every principal path P from C_{p} to $C_{q}, p \neq q$, there exists a principal path P^{\prime} from C_{q} to the last vertex of P

Special packing and ν^{*}

Definition

A special packing of size k is a collection C_{1}, \ldots, C_{k} of disjoints cycles such that for every principal path P from C_{p} to $C_{q}, p \neq q$, there exists a principal path P^{\prime} from C_{q} to the last vertex of P

Special packing and ν^{*}

Definition

A special packing of size k is a collection C_{1}, \ldots, C_{k} of disjoints cycles such that for every principal path P from C_{p} to $C_{q}, p \neq q$, there exists a principal path P^{\prime} from C_{q} to the last vertex of P

We denote $\nu^{*}(G)$ the size of a maximum special packing of a digraph G.

Special packing and ν^{*}

Definition

A special packing of size k is a collection C_{1}, \ldots, C_{k} of disjoints cycles such that for every principal path P from C_{p} to $C_{q}, p \neq q$, there exists a principal path P^{\prime} from C_{q} to the last vertex of P

We denote $\nu^{*}(G)$ the size of a maximum special packing of a digraph G. Remark. $\nu^{*} \leq \nu \leq \tau$

Example.

Example.

$$
\tau=2
$$

Example.

Example.

Example.

Example.

Theorem (Aracena-Richard-Salinas, 2016)

$$
2^{\nu^{*}(G)} \leq \phi(G, \sigma \equiv+1)
$$

Theorem (Aracena-Richard-Salinas, 2016)

$$
2^{\nu^{*}(G)} \leq \phi(G, \sigma \equiv+1)
$$

Corollary

$$
\phi(G, \sigma \equiv+1)=2^{\tau(G)} \Longleftrightarrow \tau(G)=\nu^{*}(G)
$$

Theorem (Aracena-Richard-Salinas, 2016)

$$
2^{\nu^{*}(G)} \leq \phi(G, \sigma \equiv+1)
$$

Corollary

$$
\phi(G, \sigma \equiv+1)=2^{\tau(G)} \Longleftrightarrow \tau(G)=\nu^{*}(G)
$$

Example.

Theorem (Aracena-Richard-Salinas, 2016)

$$
2^{\nu^{*}(G)} \leq \phi(G, \sigma \equiv+1)
$$

Corollary

$$
\phi(G, \sigma \equiv+1)=2^{\tau(G)} \Longleftrightarrow \tau(G)=\nu^{*}(G)
$$

Example.

Theorem (Aracena-Richard-Salinas, 2016)

$$
2^{\nu^{*}(G)} \leq \phi(G, \sigma \equiv+1)
$$

Corollary

$$
\phi(G, \sigma \equiv+1)=2^{\tau(G)} \Longleftrightarrow \tau(G)=\nu^{*}(G)
$$

Example.

Theorem (Aracena-Richard-Salinas, 2016)

$$
2^{\nu^{*}(G)} \leq \phi(G, \sigma \equiv+1)
$$

Corollary

$$
\phi(G, \sigma \equiv+1)=2^{\tau(G)} \Longleftrightarrow \tau(G)=\nu^{*}(G)
$$

Example.

Theorem (Aracena-Richard-Salinas, 2016)

$$
2^{\nu^{*}(G)} \leq \phi(G, \sigma \equiv+1)
$$

Corollary

$$
\phi(G, \sigma \equiv+1)=2^{\tau(G)} \Longleftrightarrow \tau(G)=\nu^{*}(G)
$$

Example.

Theorem (Aracena-Richard-Salinas, 2016)

$$
2^{\nu^{*}(G)} \leq \phi(G, \sigma \equiv+1)
$$

Corollary

$$
\phi(G, \sigma \equiv+1)=2^{\tau(G)} \Longleftrightarrow \tau(G)=\nu^{*}(G)
$$

Example.

Example.

Example.

Example.

Example.

Example.

$$
\tau=\nu=\nu^{*}=2
$$

Example.

$\tau=\nu=\nu^{*}=2$
Four fixed points

Relation between ν and τ

The largest gap known is $\nu \log \nu \leq 30 \tau$ (Seymour, 93)

Relation between ν and τ

The largest gap known is $\nu \log \nu \leq 30 \tau$ (Seymour, 93)

Theorem (Reed-Robertson-Seymour-Thomas, 1996)

There exists $h: \mathbb{N} \rightarrow \mathbb{N}$ such that, for every digraph G,

$$
\tau \leq h(\nu)
$$

Relation between ν and τ

The largest gap known is $\nu \log \nu \leq 30 \tau$ (Seymour, 93)

Theorem (Reed-Robertson-Seymour-Thomas, 1996)

There exists $h: \mathbb{N} \rightarrow \mathbb{N}$ such that, for every digraph G,

$$
\tau \leq h(\nu)
$$

Corollary

$$
\nu+1 \leq \phi(G) \leq 2^{\tau} \leq 2^{h(\nu)}
$$

Relation between ν and τ

The largest gap known is $\nu \log \nu \leq 30 \tau$ (Seymour, 93)

Theorem (Reed-Robertson-Seymour-Thomas, 1996)

There exists $h: \mathbb{N} \rightarrow \mathbb{N}$ such that, for every digraph G,

$$
\tau \leq h(\nu)
$$

Corollary

$$
\nu+1 \leq \phi(G) \leq 2^{\tau} \leq 2^{h(\nu)}
$$

Question: It is possible to prove directly that $\phi(G) \leq 2^{h(\nu)}$ without using Theorem of Reed et al., 1996?

AND-OR-NOT networks

- J. Aracena, A. Richard, L. Salinas. Maximum number of fixed points in AND?OR?NOT networks. Journal of Computer and System Sciences 80 (2014), 1175-1190.
- J. Aracena, A. Richard, L. Salinas. Fixed points in conjunctive networks and maximal independent sets in graph contractions. Journal of Computer and System Sciences, 2015. Submitted.

AND-NOT networks

- A BN $N=(G=(V, A), F)$ is an AND-NOT network if each local activation function is a conjunction of some variables o negated variables.
- That is, for all $i \in V$:

$$
f_{i}(x)=\bigwedge_{j:(j, i) \in A} y_{j}, \quad y_{j} \in\left\{x_{j}, \bar{x}_{j}\right\} .
$$

Example:

- $f_{1}(x)=\bar{x}_{3} \wedge x_{4}$
- $f_{2}(x)=x_{1} \wedge x_{3}$
- $f_{3}(x)=x_{1} \wedge x_{2} \wedge \bar{x}_{4}$
- $f_{4}(x)=\bar{x}_{2}$

Observations about AND-NOT networks

- AND-OR-NOT-networks are particular cases of AND-NOT networks.

Observations about AND-NOT networks

- AND-OR-NOT-networks are particular cases of AND-NOT networks.
- Every BN can be represented by an AND-NOT network with auxiliar variables.

Observations about AND-NOT networks

- AND-OR-NOT-networks are particular cases of AND-NOT networks.
- Every BN can be represented by an AND-NOT network with auxiliar variables.
- An AND-NOT network is completely defined by its signed interaction graph. Thus, we will denote by (G, σ) the AND-NOT network associated.

Maximum number of fixed points in AND-NOT networks

Theorem (Aracena-Demongeot-Goles, 2004)

The maximum number of points fixed in loop-less connected AND-NOT networks with n vertices and without negative cycles is $2^{(n-1) / 2}$ for n odd and $2^{(n-2) / 2}+1$ for n even.

Maximum number of fixed points in AND-NOT networks

Theorem (Aracena,Richard, Salinas,2014)

The maximum number of points fixed in loop-less connected AND-NOT networks with n vertices is $\mu(n)$, where

$$
\mu(n)= \begin{cases}2 \cdot 3^{s-1}+2^{s-1} & \text { if } n=3 s \\ 3^{s}+2^{s-1} & \text { if } n=3 s+1 \\ 4 \cdot 3^{s-1}+3 \cdot 2^{s-2} & \text { if } n=3 s+2\end{cases}
$$

Fixed points in symmetric AND-NOT networks

Fixed points in symmetric AND-NOT networks

Theorem (Aracena-Richard-Salinas, 2015)
Let G be a loop-less symmetric digraph without a copy induced of C_{4}. Then, ($G, \sigma \equiv-1$) has the maximum number of fixed points. Besides, $|F P(G, \sigma \equiv-1)|=|M I S(G)|$.

Fixed points in symmetric AND-NOT networks

Theorem (Aracena-Richard-Salinas, 2015)

Let G be a loop-less symmetric digraph without a copy induced of C_{4}. Then, ($G, \sigma \equiv-1$) has the maximum number of fixed points. Besides, $|F P(G, \sigma \equiv-1)|=|M I S(G)|$.

Example.

Fixed points in symmetric AND-NOT networks

Theorem (Aracena-Richard-Salinas, 2015)

Let G be a loop-less symmetric digraph without a copy induced of C_{4}. Then, ($G, \sigma \equiv-1$) has the maximum number of fixed points. Besides, $|F P(G, \sigma \equiv-1)|=|M I S(G)|$.

Example.

Question: Given G a loop-less symmetric digraph, $\phi(G, \sigma) \leq(G, \sigma \equiv=-1)$?

Fixed points in symmetric AND-NOT networks

Theorem (Aracena-Richard-Salinas, 2015)

Let G be a loop-less symmetric digraph without a copy induced of C_{4}. Then, ($G, \sigma \equiv-1$) has the maximum number of fixed points. Besides, $|F P(G, \sigma \equiv-1)|=|M I S(G)|$.

Example.

$\phi\left(K_{3}, \sigma_{2}\right)=2 ; \tau^{+}=2$

Question: Given G a loop-less symmetric digraph, $\phi(G, \sigma) \leq(G, \sigma \equiv=-1)$?

References

- J. Aracena, J. Demongeot, and E. Goles. Positive and negative circuits in discrete neural networks. IEEE Transactions of Neural Networks, 15:77-83, 2004.
- O. Cinquin and J. Demongeot. Positive and negative feedback: striking a balance between necessary antagonists. J. Theor. Biol. 216 (2002), 229-241.
- P. Erdős. On a lemma of littlewood and offord. Bulletin of the American Mathematical Society, 51(12):898-902, 1945.
- J. Hopfield. Neural networks and physical systems with emergent collective computational abilities. Proc. Nat. Acad. Sc. U.S.A., 79:2554-2558, 1982.
- S. A. Kaufman. Metabolic stability and epigenesis in randomly connected nets. Journal of Theoretical Biology, 22:437-467, 1969.
- B. Reed, N. Robertson, P. Seymour, and R. Thomas. Packing directed circuits. Combinatorica, 16(4):535-554, 1996.
- E. Remy, P. Ruet and D. Thieffry. Graphic requirements for multistability and attractive cycles in a Boolean dynamical framework. Adv. Appl. Math. 41 (2008), 335-350.
- A. Richard and J.P. Comet. Necessary conditions for multistationarity in discrete dynamical systems. Discrete Appl. Math. 155 (2007), 2403?2413.
- F. Robert. Discrete iterations: a metric study, volume 6 of Series in Computational Mathematics. Springer, 1986.
- E. Snoussi. Necessary conditions for multistationarity and stable periodicity. J. Biol. Syst. 6 (1998), 3-9.
- R. Thomas. Boolean formalization of genetic control circuits. Journal of Theoretical Biology, 42(3):563-585, 1973.

Bon Anniversaire Jacques!

Merci!

[^0]: * Research stay august 2016- january 2017, funded by Labex project and Université de Nice

