Enumeration and extension of non-equivalent deterministic update schedules in Boolean networks

Lilian Salinas1,*

joint work with
Julio Aracena2,*, Eduardo Palma

* Research stay August 2016–January 2017, funded by Labex project and Université de Nice

January 4th, 2017
Contents

1 Boolean network

2 Motivation

3 Update digraph

4 Problem

5 Algorithm
 - Reduce
 - Divide and Conquer
 - Example

6 References
A genetic regulatory network consists of a set of genes, proteins, small molecules, and their mutual interactions.

(L. Mendoza and E. Alvarez, 1998)
Boolean networks

A finite set V of n elements and n states variables $x_v \in \{0, 1\}$, $v \in V$
Boolean networks

Boolean Network

A finite set V of n element and n states variables $x_v \in \{0, 1\}, \ v \in V$
Boolean Networks

A finite set V of n element and n states variables $x_v \in \{0, 1\}$, $v \in V$

A global activation function $F = (f_v)_{v \in V} : \{0, 1\}^n \to \{0, 1\}^n$

- Composed by local activation functions $f_v : \{0, 1\}^n \to \{0, 1\}$

$f_1(x) = x_2 \land x_4$
$f_2(x) = x_1$
$f_3(x) = x_2 \lor x_3$
$f_4(x) = x_3 \land x_4$
Boolean Networks

- A finite set V of n elements and n states variables $x_v \in \{0, 1\}$, $v \in V$
- A global activation function $F = (f_v)_{v \in V} : \{0, 1\}^n \rightarrow \{0, 1\}^n$
 - Composed by local activation functions $f_v : \{0, 1\}^n \rightarrow \{0, 1\}$
- Schedule $s : V \rightarrow \{1, \ldots, n\}$

$s(2) = 1 \quad s(1) = 1$

$f_1(x) = x_2 \land x_4$
$f_2(x) = x_1$
$f_3(x) = x_2 \lor x_3$
$f_4(x) = x_3 \land x_4$
$s = \{1, 2, 3, 4\}$
Boolean networks

Boolean Networks

- A finite set V of n elements and n states variables $x_v \in \{0, 1\}, \ v \in V$
- A global activation function $F = (f_v)_{v \in V} : \{0, 1\}^n \rightarrow \{0, 1\}^n$
 - Composed by local activation functions $f_v : \{0, 1\}^n \rightarrow \{0, 1\}$
- Schedule $s : V \rightarrow \{1, \ldots, n\}$

$$s(1) = 1 \quad s(2) = 1$$

$$f_1(x) = x_2 \land x_4$$
$$f_2(x) = x_1$$
$$f_3(x) = x_2 \lor x_3$$
$$f_4(x) = x_3 \land x_4$$
$$s = \{1, 2, 3, 4\}$$
Boolean Networks

- A finite set \(V \) of \(n \) elements and \(n \) states variables \(x_v \in \{0, 1\}, \ v \in V \)
- A global activation function \(F = (f_v)_{v \in V} : \{0, 1\}^n \rightarrow \{0, 1\}^n \)
 - Composed by local activation functions \(f_v : \{0, 1\}^n \rightarrow \{0, 1\} \)
- Schedule \(s : V \rightarrow \{1, \ldots, n\} \)

\[
egin{align*}
s(2) &= 2 & s(1) &= 1 \\
s(3) &= 3 & s(4) &= 4 \\
f_1(x) &= x_2 \land x_4 \\
f_2(x) &= x_1 \\
f_3(x) &= x_2 \lor x_3 \\
f_4(x) &= x_3 \land x_4 \\
s &= \{1\} \{2\} \{3\} \{4\}
\end{align*}
\]
Boolean networks

A finite set V of n elements and n states variables $x_v \in \{0, 1\}$, $v \in V$

A global activation function $F = (f_v)_{v \in V} : \{0, 1\}^n \rightarrow \{0, 1\}^n$

Composed by local activation functions $f_v : \{0, 1\}^n \rightarrow \{0, 1\}$

Schedule $s : V \rightarrow \{1, \ldots, n\}$

$F = \{f_v\}_{v \in V}$

$s(1) = 1$
$s(2) = 2$
$s(3) = 3$
$s(4) = 4$

$f_1(x) = x_2 \land x_4$
$f_2(x) = x_1$
$f_3(x) = x_2 \lor x_3$
$f_4(x) = x_3 \land x_4$

$s = \{1\} \{2\} \{3\} \{4\}$
Boolean networks

Boolean Networks

- A finite set V of n element and n states variables $x_v \in \{0, 1\}$, $v \in V$
- A global activation function $F = (f_v)_{v \in V} : \{0, 1\}^n \rightarrow \{0, 1\}^n$
 - Composed by local activation functions $f_v : \{0, 1\}^n \rightarrow \{0, 1\}$
- Schedule $s : V \rightarrow \{1, \ldots, n\}$

$s(2) = 2$
$s(1) = 1$

$s(3) = 3$
$s(4) = 4$

$f_1(x) = x_2 \land x_4$
$f_2(x) = x_1$
$f_3(x) = x_2 \lor x_3$
$f_4(x) = x_3 \land x_4$

$s = \{1\} \{2\} \{3\} \{4\}$
Boolean Networks

- A finite set V of n elements and n state variables $x_v \in \{0, 1\}, \ v \in V$
- A global activation function $F = (f_v)_{v \in V} : \{0, 1\}^n \rightarrow \{0, 1\}^n$
 - Composed by local activation functions $f_v : \{0, 1\}^n \rightarrow \{0, 1\}$
- Schedule $s : V \rightarrow \{1, \ldots, n\}$

\[
s(1) = 1 \\
 s(2) = 2 \\
 s(3) = 3 \\
 s(4) = 4 \\
\]

\[
f_1(x) = x_2 \land x_4 \\
f_2(x) = x_1 \\
f_3(x) = x_2 \lor x_3 \\
f_4(x) = x_3 \land x_4 \\
\]

$s = \{1\} \{2\} \{3\} \{4\}$
Boolean networks

A finite set V of n element and n states variables $x_v \in \{0, 1\}$, $v \in V$

A global activation function $F = (f_v)_{v \in V} : \{0, 1\}^n \to \{0, 1\}^n$

Composed by local activation functions $f_v : \{0, 1\}^n \to \{0, 1\}$

Schedule $s : V \to \{1, \ldots, n\}$

$s(1) = 1$ $s(2) = 2$ $s(3) = 3$ $s(4) = 4$

$f_1(x) = x_2 \land x_4$
$f_2(x) = x_1$
$f_3(x) = x_2 \lor x_3$
$f_4(x) = x_3 \land x_4$

$s = \{1\} \{2\} \{3\} \{4\}$
Boolean networks

A finite set \(V \) of \(n \) element and \(n \) states variables
\(x_v \in \{0, 1\}, \ v \in V \)

A global activation function
\(F = (f_v)_{v \in V} : \{0, 1\}^n \rightarrow \{0, 1\}^n \)

Composed by local activation functions
\(f_v : \{0, 1\}^n \rightarrow \{0, 1\} \)

Schedule \(s : V \rightarrow \{1, \ldots, n\} \)

\[
\begin{align*}
\text{s(2)} &= 2 & \text{s(1)} &= 2 \\
\text{s(3)} &= 1 & \text{s(4)} &= 1 \\
&
\end{align*}
\]

\[
\begin{align*}
&f_1(x) = x_2 \land x_4 \\
&f_2(x) = x_1 \\
&f_3(x) = x_2 \lor x_3 \\
&f_4(x) = x_3 \land x_4 \\
&s = \{3, 4\} \{1, 2\}
\end{align*}
\]
Boolean Networks

- A finite set V of n elements and n states variables $x_v \in \{0, 1\}$, $v \in V$
- A global activation function $F = (f_v)_{v \in V} : \{0, 1\}^n \to \{0, 1\}^n$
 - Composed by local activation functions $f_v : \{0, 1\}^n \to \{0, 1\}$
- Schedule $s : V \to \{1, \ldots, n\}$

Example: (Update schedules in Boolean networks)

- $s(2) = 2$, $s(1) = 2$
- $s(3) = 1$, $s(4) = 1$
- $f_1(x) = x_2 \land x_4$
- $f_2(x) = x_1$
- $f_3(x) = x_2 \lor x_3$
- $f_4(x) = x_3 \land x_4$
- $s = \{3, 4\} \{1, 2\}$
Boolean Networks

- A finite set V of n elements and n state variables $x_v \in \{0, 1\}, \ v \in V$
- A global activation function $F = (f_v)_{v \in V} : \{0, 1\}^n \rightarrow \{0, 1\}^n$
 - Composed by local activation functions $f_v : \{0, 1\}^n \rightarrow \{0, 1\}$
- Schedule $s : V \rightarrow \{1, \ldots, n\}$

$$
\begin{align*}
\text{s(2)} &= 2 & \text{s(1)} &= 2 \\
\text{s(3)} &= 1 & \text{s(4)} &= 1
\end{align*}
$$

$$
\begin{align*}
f_1(x) &= x_2 \land x_4 \\
f_2(x) &= x_1 \\
f_3(x) &= x_2 \lor x_3 \\
f_4(x) &= x_3 \land x_4
\end{align*}
$$

$s = \{3, 4\} \ {\{1, 2\}}$
Dynamical behavior

The iteration of the Boolean network is given by:

$$x_{v}^{k+1} = f_{v}(x_{u}^{l_u} : u \in V), \quad l_u = \begin{cases}
 k & \text{if } s(v) \leq s(u) \\
 k + 1 & \text{if } s(v) > s(u)
\end{cases}$$
The iteration of the Boolean network is given by:

\[x^{k+1}_v = f_v(x^l_u : u \in V), \quad l_u = \begin{cases} k & \text{if } s(v) \leq s(u) \\ k + 1 & \text{if } s(v) > s(u) \end{cases} \]

Dynamical behavior

F

\[F^s : \{0, 1\}^n \to \{0, 1\}^n : \]

\[f^s_v(x) = f_v(g^s_{v,u}(x) : u \in V), \quad g^s_{v,u}(x) = \begin{cases} x_u & \text{if } s(v) \leq s(u) \\ f^s_u(x) & \text{if } s(v) > s(u) \end{cases} \]
Example of dynamical behavior

\[s_1 = \{1, 2, 3, 4\} \]

\[
\begin{align*}
 f_{s_1}^1(x) &= x_2 \land x_4 \\
 f_{s_1}^2(x) &= x_1 \\
 f_{s_1}^3(x) &= x_2 \lor x_3 \\
 f_{s_1}^4(x) &= x_3 \land x_4
\end{align*}
\]
Example of dynamical behavior

\[s_1 = \{1, 2, 3, 4\} \quad s_2 = \{1\} \{2\} \{3\} \{4\} \]

\[f_{s_1}^1(x) = x_2 \land x_4 \]
\[f_{s_1}^2(x) = x_1 \]
\[f_{s_1}^3(x) = x_2 \lor x_3 \]
\[f_{s_1}^4(x) = x_3 \land x_4 \]
Example of dynamical behavior

\[s_1 = \{1, 2, 3, 4\} \quad \text{and} \quad s_2 = \{1\} \{2\} \{3\} \{4\} \]

\[f_{s_1}^{s_1}(x) = x_2 \land x_4 \quad f_{s_2}^{s_2}(x) = x_2 \land x_4 \]
\[f_{s_1}^{s_1}(x) = x_1 \]
\[f_{s_1}^{s_1}(x) = x_2 \lor x_3 \]
\[f_{s_1}^{s_1}(x) = x_3 \land x_4 \]
Example of dynamical behavior

\[s_1 = \{1, 2, 3, 4\} \quad s_2 = \{1\} \{2\} \{3\} \{4\} \]

\[f_{s_1}^1(x) = x_2 \land x_4 \]
\[f_{s_1}^2(x) = x_1 \]
\[f_{s_1}^3(x) = x_2 \lor x_3 \]
\[f_{s_1}^4(x) = x_3 \land x_4 \]

\[f_{s_2}^1(x) = x_2 \land x_4 \]
\[f_{s_2}^2(x) = x_2 \land x_4 \]

Lilian Salinas (U. Concepción)
Update schedules in Boolean networks
Marseille 2017
Example of dynamical behavior

\[s_1 = \{1, 2, 3, 4\} \quad s_2 = \{1\} \{2\} \{3\} \{4\} \]

\[f_{s_1}^{S_1}(x) = x_2 \land x_4 \quad f_{s_2}^{S_2}(x) = x_2 \land x_4 \]
\[f_{s_1}^{S_1}(x) = x_1 \quad f_{s_2}^{S_2}(x) = x_2 \land x_4 \]
\[f_{s_1}^{S_1}(x) = x_2 \lor x_3 \quad f_{s_2}^{S_2}(x) = (x_2 \land x_4) \lor x_3 \]
\[f_{s_1}^{S_1}(x) = x_3 \land x_4 \]
Example of dynamical behavior

\[s_1 = \{1, 2, 3, 4\} \quad s_2 = \{1\} \{2\} \{3\} \{4\} \]

\[
\begin{align*}
 f_{s_1}^1(x) &= x_2 \land x_4 & f_{s_2}^1(x) &= x_2 \land x_4 \\
 f_{s_1}^2(x) &= x_1 & f_{s_2}^2(x) &= x_2 \land x_4 \\
 f_{s_1}^3(x) &= x_2 \lor x_3 & f_{s_2}^3(x) &= (x_2 \land x_4) \lor x_3 \\
 f_{s_1}^4(x) &= x_3 \land x_4 & f_{s_2}^4(x) &= ((x_2 \land x_4) \lor x_3) \land x_4
\end{align*}
\]
Boolean network

Example of dynamical behavior

\[s_1 = \{1, 2, 3, 4\} \quad s_2 = \{1\} \{2\} \{3\} \{4\} \quad s_3 = \{3, 4\} \{1, 2\} \]

\[
\begin{align*}
 f_{s_1}^1(x) &= x_2 \land x_4 \\
 f_{s_1}^2(x) &= x_1 \\
 f_{s_1}^3(x) &= x_2 \lor x_3 \\
 f_{s_1}^4(x) &= x_3 \land x_4 \\
 f_{s_2}^1(x) &= x_2 \land x_4 \\
 f_{s_2}^2(x) &= x_2 \land x_4 \\
 f_{s_2}^3(x) &= (x_2 \land x_4) \lor x_3 \\
 f_{s_2}^4(x) &= ((x_2 \land x_4) \lor x_3) \land x_4
\end{align*}
\]
Example of dynamical behavior

\[s_1 = \{1, 2, 3, 4\} \]
\[s_2 = \{1\} \{2\} \{3\} \{4\} \]
\[s_3 = \{3, 4\} \{1, 2\} \]

\[f_{s_1}^1(x) = x_2 \land x_4 \]
\[f_{s_1}^2(x) = x_1 \]
\[f_{s_1}^3(x) = x_2 \lor x_3 \]
\[f_{s_1}^4(x) = x_3 \land x_4 \]
\[f_{s_2}^1(x) = x_2 \land x_4 \]
\[f_{s_2}^2(x) = x_2 \land x_4 \]
\[f_{s_2}^3(x) = (x_2 \land x_4) \lor x_3 \]
\[f_{s_2}^4(x) = ((x_2 \land x_4) \lor x_3) \land x_4 \]
\[f_{s_3}^1(x) = x_2 \lor x_3 \]
\[f_{s_3}^2(x) = x_2 \land x_4 \]
\[f_{s_3}^3(x) = x_2 \lor x_3 \]
\[f_{s_3}^4(x) = x_3 \land x_4 \]
Example of dynamical behavior

\[s_1 = \{1, 2, 3, 4\} \quad s_2 = \{1\} \{2\} \{3\} \{4\} \quad s_3 = \{3, 4\} \{1, 2\} \]

\[
\begin{align*}
 f_{s_1}^1(x) &= x_2 \land x_4 \\
 f_{s_1}^2(x) &= x_1 \\
 f_{s_1}^3(x) &= x_2 \lor x_3 \\
 f_{s_1}^4(x) &= x_3 \land x_4 \\
 f_{s_2}^1(x) &= x_2 \land x_4 \\
 f_{s_2}^2(x) &= x_2 \land x_4 \\
 f_{s_2}^3(x) &= (x_2 \land x_4) \lor x_3 \\
 f_{s_2}^4(x) &= ((x_2 \land x_4) \lor x_3) \land x_4 \\
 f_{s_3}^1(x) &= x_2 \land x_3 \land x_4 \\
 f_{s_3}^2(x) &= x_1 \\
 f_{s_3}^3(x) &= x_2 \lor x_3 \\
 f_{s_3}^4(x) &= x_3 \land x_4
\end{align*}
\]
\[s_1 = \{1, 2, 3, 4\} \]
\[s_2 = \{1\} \{2\} \{3\} \{4\} \]
\[s_3 = \{3, 4\} \{1, 2\} \]

State Transition Table

<table>
<thead>
<tr>
<th>State</th>
<th>(F^{s_1})</th>
<th>(F^{s_2})</th>
<th>(F^{s_3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
<td>0000</td>
<td>0000</td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
<td>0010</td>
<td>0010</td>
</tr>
<tr>
<td>3</td>
<td>0011</td>
<td>0011</td>
<td>0011</td>
</tr>
<tr>
<td>4</td>
<td>0100</td>
<td>0010</td>
<td>0010</td>
</tr>
<tr>
<td>5</td>
<td>0101</td>
<td>1010</td>
<td>0010</td>
</tr>
<tr>
<td>6</td>
<td>0110</td>
<td>0010</td>
<td>0010</td>
</tr>
<tr>
<td>7</td>
<td>0111</td>
<td>1011</td>
<td>1011</td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
<td>0000</td>
<td>0100</td>
</tr>
<tr>
<td>9</td>
<td>1001</td>
<td>0100</td>
<td>0000</td>
</tr>
<tr>
<td>10</td>
<td>1010</td>
<td>0110</td>
<td>0110</td>
</tr>
<tr>
<td>11</td>
<td>1011</td>
<td>0111</td>
<td>0111</td>
</tr>
<tr>
<td>12</td>
<td>1100</td>
<td>0110</td>
<td>0110</td>
</tr>
<tr>
<td>13</td>
<td>1101</td>
<td>1110</td>
<td>0110</td>
</tr>
<tr>
<td>14</td>
<td>1110</td>
<td>0110</td>
<td>0110</td>
</tr>
<tr>
<td>15</td>
<td>1111</td>
<td>1111</td>
<td>1111</td>
</tr>
</tbody>
</table>
Dynamical problems related to schedule

- Does there exist two different update schedules s_1, s_2 such that the function F updated with s_1 has the same dynamical behavior, that F updated with s_2?
Dynamical problems related to schedule

- Does there exist two different update schedules s_1, s_2 such that the function F updated with s_1 has the same dynamical behavior, that F updated with s_2?

- Does there exist two update schedules s_1, s_2 such that the function F updated with s_1 has the same attractors that F updated with s_2?
Dynamical problems related to schedule

- Does there exist two different update schedules s_1, s_2 such that the function F updated with s_1 has the same dynamical behavior, that F updated with s_2?
- Does there exist two update schedules s_1, s_2 such that the function F updated with s_1 has the same attractors that F updated with s_2?
- Does there exist an update schedule s such that the function F updated with s does not have limit cycles?
Dynamical problems related to schedule

- Does there exist two different update schedules \(s_1, s_2 \) such that the function \(F \) updated with \(s_1 \) has the same dynamical behavior, that \(F \) updated with \(s_2 \)?
- Does there exist two update schedules \(s_1, s_2 \) such that the function \(F \) updated with \(s_1 \) has the same attractors that \(F \) updated with \(s_2 \)?
- Does there exist an update schedule \(s \) such that the function \(F \) updated with \(s \) does not have limit cycles?
- Does there exist an update schedule \(s \) such that the function \(F \) updated with \(s \) has limit cycles?
Dynamical problems related to schedule

- Does there exist two different update schedules s_1, s_2 such that the function F updated with s_1 has the same dynamical behavior, that F updated with s_2?
- Does there exist two update schedules s_1, s_2 such that the function F updated with s_1 has the same attractors that F updated with s_2?
- Does there exist an update schedule s such that the function F updated with s does not have limit cycles?
- Does there exist an update schedule s such that the function F updated with s has limit cycles?
- Does there exist an update schedule s such that given $x^1, \ldots, x^k, y^1, \ldots, y^k \in \{0, 1\}^n$, $F^s(x^i) = y^i$?
A labeled digraph is a graph G with a label function lab, (G, lab) such that: $\text{lab} : A(G) \rightarrow \{\oplus, \ominus\}$

We say that a labeled digraph is an update digraph if there exists $s : V(G) \rightarrow \{1, \ldots, n\}$, an update function such that:

$$\forall (u, v) \in A(G), \text{lab}(u, v) = \oplus \iff s(u) \geq s(v)$$

\[s_1 = \{1, 2, 3, 4\} \quad s_2 = \{1\} \{2\} \{3\} \{4\} \quad s_3 = \{3, 4\} \{1, 2\} \]
Why are we interested in update digraphs?

Theorem (Aracena, Goles, Moreira, Salinas (2009))

Given two Boolean networks $N_1 = (F, s)$ and $N_2 = (F, s')$ which differ only in the update schedule. If the update digraphs associated to them are equal, then both networks have the same dynamical behavior.
Why are we interested in update digraphs?

Theorem (Aracena, Goles, Moreira, Salinas (2009))

Given two Boolean networks $N_1 = (F, s)$ and $N_2 = (F, s')$ which differ only in the update schedule. If the update digraphs associated to them are equal, then both networks have the same dynamical behavior.

$s = \{2\} \{1\} \{3\} \{4\}$ and $s' = \{2\} \{3\} \{1\} \{4\}$

Of this way, we say that two update schedules are equivalent if and only if they have the same update digraph.
New questions

- Given a labeled digraph. Is it an update digraph?
New questions

- Given a labeled digraph. Is it an update digraph?
- If it is an update digraph. How do we find un update shedule with this update digraph?
New questions

- Given a labeled digraph. Is it an update digraph?
- If it is an update digraph. How do we find un update shedule with this update digraph?
- How many non-equivalent update schedules are there? How many elements does each have?
New questions

- Given a labeled digraph. Is it an update digraph?
- If it is an update digraph. How do we find un update shedule with this update digraph?
- How many non-equivalent update schedules are there? How many elements does each have?
- Given a certain dynamical property. Is there an equivalence class that holds it?
Given \((G, \text{lab})\) a labeled digraph, we define the reverse digraph as \((G_r, \text{lab}_r)\), where:

\[
V(G_r) = V(G)
\]

\[
A(G_r) = \{(u, v) / ((v, u) \in A(G) \land \text{lab}(v, u) = \ominus) \\
\lor ((u, v) \in A(G) \land \text{lab}(u, v) = \oplus)\}
\]

\[
\text{lab}_r(u, v) = \begin{cases}
\ominus & \text{if } (v, u) \in A(G) \land \text{lab}(v, u) = \ominus \\
\oplus & \text{otherwise}
\end{cases}
\]
Reverse Path

A reverse path is a path in the reverse graph.

Labeled digraph

Reverse digraph

Update digraph

Labels and Update digraphs
Labels and Update digraphs

Reverse Path
A reverse path is a path in the reverse graph.

Negative Reverse Path
A negative reverse path is a path with an arc labeled \ominus in the reverse graph.

Labeled digraph

Reverse digraph
Forbidden cycle

A forbidden cycle is a cycle with an arc labeled \ominus in the reverse graph.

Theorem (Montalva (2012))

A labeled digraph is an update digraph if and only if there does not exist a forbidden cycle in its reverse digraph.
Is it an update digraph?

\[G : \]

\[G \oplus : \]

\[G \ominus : \]

Forbidden cycle
Is it an update digraph?

$G : \quad G_{\oplus} :$

\[\begin{array}{c}
\text{Forbidden cycle} \\
\text{Lilian Salinas (U. Concepción)} \\
\text{Update schedules in Boolean networks} \\
\text{Marseille 2017} \\
\end{array} \]
Is it an update digraph?

\[G : \]

\[G_\oplus : \]

Forbidden cycle

Lilian Salinas (U. Concepción)
Is it an update digraph?

\[G : \]

\[G_{\oplus} : \]

\[G_{R} : \]
Is it an update digraph?

G :

G⊕ :

GR :

Forbidden cycle
How I find the update schedule of a label?

\[G : \]

- How I find the update schedule of a label?
How I find the update schedule of a label?

\[G : \]

\[G_{\oplus} : \]

Lilian Salinas (U. Concepción) Update schedules in Boolean networks Marseille 2017 14 / 31
How I find the update schedule of a label?

$G : \quad G_{\oplus} :$

Lilian Salinas (U. Concepción)
How I find the update schedule of a label?

G:

G_{\oplus}:

G_R:

$s = \{3, 4\} \setminus \{5\} \setminus \{1, 2\}$
How I find the update schedule of a label?

\[
g : \quad G \quad \quad \quad \quad G_{\oplus} : \quad \quad \quad \quad G_R : \quad \quad \quad \quad s = \{3, 4\} \{5\} \{1, 2\}
\]
Transition problem

Does there exist an update schedule \(s \) such that given \(x^1, \ldots, x^k, y^1, \ldots, y^k \in \{0, 1\}^n \), \(F^s(x^i) = y^i \)?
Transition problem

Does there exist an update schedule s such that given $x^1, \ldots, x^k, y^1, \ldots, y^k \in \{0, 1\}^n$, $F^s(x^i) = y^i$?

Transition problem

Does there exist an update schedule s such that given $x^1, \ldots, x^k, y^1, \ldots, y^k \in \{0, 1\}^n$, $F^s(x^i) = y^i$?

Limit cycle

<table>
<thead>
<tr>
<th>$v \in V(G')$</th>
<th>v_1</th>
<th>v_2</th>
<th>v_3</th>
<th>v_4</th>
<th>v_5</th>
<th>v_6</th>
<th>v_7</th>
<th>v_8</th>
<th>v_9</th>
<th>v_{10}</th>
</tr>
</thead>
<tbody>
<tr>
<td>x^0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>x^1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>x^2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>x^3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>x^4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>x^5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>x^6</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>x^7</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

$f_{v_1}(x) = x_{v_1}$

$f_{v_2}(x) = (\neg x_{v_1} \land \neg x_{v_{10}}) \land ([\neg x_{v_4} \land \neg x_{v_5}] \lor x_{v_6})$

$f_{v_3}(x) = (\neg x_{v_2} \land \neg x_{v_5} \land \neg x_{v_{10}}) \lor (x_{v_6} \land \neg x_{v_2} \land \neg x_{v_{10}})$

$f_{v_4}(x) = x_{v_3} \land \neg x_{v_2}$

$f_{v_5}(x) = (\neg x_{v_2} \land \neg x_{v_7} \land (\neg (x_{v_8} \land x_{v_9})) \land (x_{v_3} \lor x_{v_5})$

$f_{v_6}(x) = (\neg x_{v_1} \land \neg x_{v_{10}}) \land ([\neg x_{v_4} \land \neg x_{v_5}] \lor [x_{v_6} \land \neg (x_{v_4} \land x_{v_5})])$

$f_{v_7}(x) = x_{v_{10}}$

$f_{v_8}(x) = (\neg x_{v_5} \land \neg x_{v_{10}}) \lor x_{v_7} \lor (x_{v_6} \land \neg x_{v_{10}})$

$f_{v_9}(x) = \neg x_{v_8} \lor (x_{v_8} \land x_{v_9} \land [x_{v_7} \lor x_{v_5} \lor x_{v_{10}}])$

$f_{v_{10}}(x) = \neg x_{v_7} \land \neg x_{v_8}$

Does there exist an update schedule s such that given $x^1, \ldots, x^k, y^1, \ldots, y^k \in \{0, 1\}^n$, $F^s(x^i) = y^i$?

<table>
<thead>
<tr>
<th>Limit cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>$v \in V(G^f)$</td>
</tr>
<tr>
<td>x^0</td>
</tr>
<tr>
<td>x^1</td>
</tr>
<tr>
<td>x^2</td>
</tr>
<tr>
<td>x^3</td>
</tr>
<tr>
<td>x^4</td>
</tr>
<tr>
<td>x^5</td>
</tr>
<tr>
<td>x^6</td>
</tr>
<tr>
<td>x^7</td>
</tr>
</tbody>
</table>

$f_{v_1}(x) = x_v^1$
$f_{v_2}(x) = (\neg x_v^1 \land \neg x_v^{10}) \land ([\neg x_v^4 \land \neg x_v^5] \lor x_v^6)$
$f_{v_3}(x) = (\neg x_v^2 \land \neg x_v^5 \land \neg x_v^{10}) \lor (x_v^6 \land \neg x_v^2 \land \neg x_v^{10})$
$f_{v_4}(x) = x_v^3 \land \neg x_v^2$
$f_{v_5}(x) = (\neg x_v^2 \land \neg x_v^7 \land \neg (x_v^8 \land x_v^9)) \land (x_v^3 \lor x_v^5)$
$f_{v_6}(x) = (\neg x_v^1 \land \neg x_v^{10}) \land ([\neg x_v^4 \land \neg x_v^5] \lor [x_v^6 \land \neg (x_v^4 \land x_v^5)])$
$f_{v_7}(x) = x_v^{10}$
$f_{v_8}(x) = (\neg x_v^5 \land \neg x_v^{10}) \lor x_v^7 \lor (x_v^6 \land \neg x_v^{10})$
$f_{v_9}(x) = \neg x_v^8 \lor (x_v^8 \land x_v^9 \land [x_v^7 \lor x_v^5 \lor x_v^{10}])$
$f_{v_{10}}(x) = \neg x_v^7 \land \neg x_v^8$

Update Digraph Extension Problem

UDE

Given a labeled digraph \((G, \text{lab})\), find the set \(S(G, \text{lab})\) of all fully labeled extensions \(\text{lab}'\) of \(\text{lab}\) such that \((G, \text{lab}')\) is an update digraph.
Problem

Complexity

CUDE

Given \((G, lab)\) a labeled digraph, to determine the cardinality of the set \(S(G, lab)\).
Complexity

Problem

Given \((G, \text{lab})\) a labeled digraph, to determine the cardinality of the set \(S(G, \text{lab})\).

Theorem

CUDE is \#P-complete
Acyclic orientation problem

Given a graph to determine the number of acyclic orientations is $\#P$-complete.
Acyclic orientation problem

Given a graph to determine the number of acyclic orientations is #P-complete
Acyclic orientation problem

Given a graph to determine the number of acyclic orientations is \#P-complete
Acyclic orientation problem

Given a graph to determine the number of acyclic orientations is \(\#P \)-complete.
Theorem (Extension)

Given G a digraph and G' a subdigraph of G. If (G', lab') is an update digraph, then there exists $\text{lab} : A(G) \rightarrow \{\oplus, \ominus\}$ such that (G, lab) is an update digraph and $\text{lab}|_{A(G')} = \text{lab}'$.
Given a labeled digraph \((G, \text{lab})\) and an arc \((i, j)\) with \(\text{lab}(i, j) = \circ\):

- **If there exists a reverse path from \(i\) to \(j\), then the arc \((i, j)\) must be labeled** \(\oplus\).
- **If there exists a negative reverse path from \(j\) to \(i\), then the arc \((i, j)\) must be labeled** \(\ominus\).
Algorithm

Force

Proposition

Given a labeled digraph \((G, \text{lab})\) and an arc \((i, j)\) with \(\text{lab}(i, j) = \bigcirc\):

- If there exists a reverse path from \(i\) to \(j\), then the arc \((i, j)\) must be labeled \(\oplus\).
- If there exists a negative reverse path from \(j\) to \(i\), then the arc \((i, j)\) must be labeled \(\ominus\).

Matrix \(M\)

\[
\begin{array}{c|ccccc}
V(G) & 1 & 2 & 3 & 4 & 5 \\
\hline
1 & \infty & 1 & \infty & -1 & \infty \\
2 & \infty & \infty & \infty & -1 & \infty \\
3 & -1 & -1 & \infty & -1 & \infty \\
4 & \infty & \infty & \infty & \infty & \infty \\
5 & \infty & \infty & \infty & \infty & \infty \\
\end{array}
\]
Algorithm

Force

Proposition

Given a labeled digraph \((G, \text{lab})\) and an arc \((i, j)\) with \(\text{lab}(i, j) = \bigcirc\):

- If there exists a reverse path from \(i\) to \(j\), then the arc \((i, j)\) must be labeled \(\oplus\)
- If there exists a negative reverse path from \(j\) to \(i\), then the arc \((i, j)\) must be labeled \(\ominus\)

Matrix \(M\)

<table>
<thead>
<tr>
<th>(V(G))</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\infty)</td>
<td>1</td>
<td>(\infty)</td>
<td>(-1)</td>
<td>(\infty)</td>
</tr>
<tr>
<td>2</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>(-1)</td>
<td>(\infty)</td>
</tr>
<tr>
<td>3</td>
<td>(-1)</td>
<td>(-1)</td>
<td>(\infty)</td>
<td>(-1)</td>
<td>(\infty)</td>
</tr>
<tr>
<td>4</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>(\infty)</td>
</tr>
<tr>
<td>5</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>(\infty)</td>
</tr>
</tbody>
</table>
Algorithm

Force

Proposition

Given a labeled digraph \((G, \text{lab})\) and an arc \((i, j)\) with \(\text{lab}(i, j) = \bigcirc\):

- If there exists a reverse path from \(i\) to \(j\), then the arc \((i, j)\) must be labeled \(\oplus\).
- If there exists a negative reverse path from \(j\) to \(i\), then the arc \((i, j)\) must be labeled \(\ominus\).

Matrix \(M\)

\[
V(G) \quad |
\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
1 & \infty & 1 & \infty & -1 & \infty \\
2 & \infty & \infty & \infty & -1 & \infty \\
3 & -1 & -1 & \infty & -1 & \infty \\
4 & \infty & \infty & \infty & \infty & \infty \\
5 & \infty & \infty & \infty & \infty & \infty
\end{array}
\]
Algorithm

Force

Proposition

Given a labeled digraph \((G, \text{lab})\) and an arc \((i, j)\) with \(\text{lab}(i, j) = \bigcirc\):

- If there exists a reverse path from \(i\) to \(j\), then the arc \((i, j)\) must be labeled \(\oplus\)
- If there exists a negative reverse path from \(j\) to \(i\), then the arc \((i, j)\) must be labeled \(\ominus\)

Matrix \(M\)

\[
\begin{array}{c|ccccc}
V(G) & 1 & 2 & 3 & 4 & 5 \\
\hline
1 & \infty & 1 & \infty & -1 & \infty \\
2 & \infty & \infty & \infty & \text{-1} & \infty \\
3 & \text{-1} & \text{-1} & \infty & \text{-1} & \infty \\
4 & \infty & \infty & \infty & \infty & \infty \\
5 & \infty & \infty & \infty & \infty & \infty \\
\end{array}
\]
Proposition

Given a labeled digraph \((G, lab)\) and an arc \((i, j)\) with \(lab(i, j) = ∘\):

- If there exists a reverse path from \(i\) to \(j\), then the arc \((i, j)\) must be labeled ⊕
- If there exists a negative reverse path from \(j\) to \(i\), then the arc \((i, j)\) must be labeled ⊖

Matrix \(M\)

<table>
<thead>
<tr>
<th>(V(G))</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>∞</td>
<td>1</td>
<td>∞</td>
<td>-1</td>
<td>∞</td>
</tr>
<tr>
<td>2</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>-1</td>
<td>∞</td>
</tr>
<tr>
<td>3</td>
<td>-1</td>
<td>-1</td>
<td>∞</td>
<td>-1</td>
<td>∞</td>
</tr>
<tr>
<td>4</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>5</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
</tbody>
</table>
Proposition

Given a labeled digraph \((G, \text{lab})\) and an arc \((i, j)\) with \(\text{lab}(i, j) = \bigcirc\):

- If there exists a reverse path from \(i\) to \(j\), then the arc \((i, j)\) must be labeled \(\oplus\).
- If there exists a negative reverse path from \(j\) to \(i\), then the arc \((i, j)\) must be labeled \(\ominus\).

Matrix \(M\)

\[
\begin{array}{c|ccccc}
V(G) & 1 & 2 & 3 & 4 & 5 \\
\hline
1 & \infty & 1 & \infty & -1 & \infty \\
2 & \infty & \infty & \infty & -1 & \infty \\
3 & -1 & -1 & \infty & -1 & \infty \\
4 & \infty & \infty & \infty & \infty & \infty \\
5 & \infty & \infty & \infty & \infty & \infty \\
\end{array}
\]
Example of SimpleLabel

Lilian Salinas (U. Concepción)
Update schedules in Boolean networks
Marseille 2017

Marseille 2017
Example of SimpleLabel
Example of SimpleLabel

\[
lab(2, 1) = \oplus
\]

\[
lab(1, 2) = \oplus
\]

\[
lab(2, 1) = \ominus
\]

\[
lab(4, 1) = \ominus
\]
Example of SimpleLabel

\[\text{lab}(2, 1) = \oplus \]

\[\text{lab}(1, 2) = \ominus \]

\[\text{lab}(4, 1) = \ominus \]
Example of SimpleLabel

\[
\text{lab}(2, 1) = \oplus \\
\text{lab}(1, 2) = \oplus\\n\{1, 2, 3, 4\}\\n\text{lab}(4, 1) = \ominus
\]
Example of SimpleLabel

\[
\text{lab}(2, 1) = \oplus
\]

\[
\text{lab}(1, 2) = \oplus
\]

\[
\text{lab}(1, 2) = \ominus
\]

\[
\text{lab}(1, 2) = \ominus
\]
Example of SimpleLabel

\[
\begin{align*}
\text{lab}(2, 1) &= \oplus \\
\text{lab}(1, 2) &= \oplus \\
\text{lab}(1, 2) &= \odot \\
\text{lab}(2, 1) &= \odot
\end{align*}
\]
Example of SimpleLabel

\[
\begin{align*}
\text{lab}(1, 2) &= \oplus \\
\text{lab}(2, 1) &= \ominus \\
\text{lab}(2, 1) &= \oplus \\
\end{align*}
\]
Example of SimpleLabel

Algorithm

Example of SimpleLabel

\[
\begin{align*}
\text{lab}(2, 1) &= \oplus \\
\text{lab}(1, 2) &= \oplus \\
\text{lab}(4, 1) &= \oplus
\end{align*}
\]
Example of SimpleLabel

\begin{align*}
\text{lab}(2, 1) &= \oplus \\
\text{lab}(1, 2) &= \ominus \\
\text{lab}(4, 1) &= \ominus \\
\text{lab}(4, 1) &= \ominus
\end{align*}

\begin{align*}
\{1, 2, 3, 4\} \\
\{1\} \{2, 3, 4\} \\
\{2, 3\} \{1, 4\} \\
\{2, 3, 4\} \{1\}
\end{align*}
Definition

Let \((G, lab)\) be an update digraph and \(\{G_1, \ldots, G_k\}\) its positive strongly connected components. We define its reduced labeled digraph by \(R(G, lab) = (G_{rd} = (V_{rd}, A_{rd}), lab_{rd})\), where:

- \(V_{rd} = \{v_1, \ldots, v_k\}\)
- \(A_{rd} = \{(v_i, v_j) | \exists (u, v) \in A(G) \cap (V(G_i) \times V(G_j))\}\)

\(lab_{rd}(v_i, v_j) = lab(u, v)\), if there exists \((u, v) \in (V(G_i) \times V(G_j)) \cap \text{Sup}(lab)\) and

\(lab_{rd}(v_i, v_j) = \bigcirc\) otherwise
Definition

Let \((G, \text{lab})\) be an update digraph and \(\{G_1, \ldots, G_k\}\) its positive strongly connected components. We define its reduced labeled digraph by \(R(G, \text{lab}) = (G_{rd} = (V_{rd}, A_{rd}), \text{lab}_{rd})\), where:

- \(V_{rd} = \{v_1, \ldots, v_k\}\)
- \(A_{rd} = \{(v_i, v_j)|\exists (u, v) \in A(G) \cap (V(G_i) \times V(G_j))\}\)

\(\text{lab}_{rd}(v_i, v_j) = \text{lab}(u, v)\), if there exists \((u, v) \in (V(G_i) \times V(G_j)) \cap \text{Sup}(\text{lab})\) and

\(\text{lab}_{rd}(v_i, v_j) = \bigcirc\) otherwise
Definition

Let \((G, \text{lab})\) be an update digraph and \(\{G_1, \ldots, G_k\}\) its positive strongly connected components. We define its reduced labeled digraph by \(R(G, \text{lab}) = (G_{rd} = (V_{rd}, A_{rd}), \text{lab}_{rd})\), where:

- \(V_{rd} = \{v_1, \ldots, v_k\}\)
- \(A_{rd} = \{(v_i, v_j) \mid \exists (u, v) \in A(G) \cap (V(G_i) \times V(G_j))\}\)

\(\text{lab}_{rd}(v_i, v_j) = \text{lab}(u, v)\), if there exists \((u, v) \in (V(G_i) \times V(G_j)) \cap \text{Sup}(\text{lab})\) and \(\text{lab}_{rd}(v_i, v_j) = \bigcirc\) otherwise.
Strongly connected components

Divide by SCC

Let \((G, lab)\) an update digraph with SCC \(G_1, \ldots, G_k\) (ordered) over its reverse extended digraph, then:

\[
S(G, lab) = S\left(\widetilde{G_1}, lab|_{A(G_1)}\right) \circ_n \cdots \circ_n S\left(\widetilde{G_k}, lab|_{A(G_k)}\right)
\]
Algorithm: Divide and Conquer

Example: Division by SCC

\[
S(G[1, 2], \text{lab}) = \{\{1, 2\}\}
\]

\[
S(G[5], \text{lab}) = \{\{5\}\}
\]

\[
S(G[3, 4], \text{lab}) = \{\{3\}, \{4\}\}
\]

Then,

\[
S(G, \text{lab}) = S(G[1, 2], \text{lab}) \circ_n S(G[5], \text{lab}) \circ_n S(G[3, 4], \text{lab})
\]

\[
= \{\{1, 2\}\{5\}, \{2\} \{1\}{5}, \{1, 2\}\{3\}{4}, \{1\} \{2\}{5}\{3\}{4}\}
\]

Lilian Salinas (U. Concepción) Update schedules in Boolean networks Marseille 2017
Example: Division by SCC

Algorithm

Divide and Conquer

Lilian Salinas (U. Concepción) Update schedules in Boolean networks Marseille 2017 24 / 31
Example: Division by SCC

\[S(G[1, 2], \text{lab}) = \{1, 2\}, \{2\} \{1\} \{5\} \]

\[S(G[3, 4], \text{lab}) = \{3\} \{4\} \{1\} \{2\} \{5\} \]

Then,

\[S(G, \text{lab}) = S(G[1, 2], \text{lab}) \circ_n S(G[3, 4], \text{lab}) \circ_n S(G[5], \text{lab}) = \{\{1, 2\} \{5\}, \{2\} \{1\} \{5\}, \{3\} \{4\} \{1\} \{2\} \{5\}, \{1\} \{2\} \{5\} \{4\} \{3\}\} \]
Example: Division by SCC

Then,

$S(G[1, 2], lab) \bowtie S(G[5], lab) \bowtie S(G[3, 4], lab) = \{\{1, 2\}, \{5\}, \{2\}, \{1\}, \{5\}\}$

$\bowtie S(G, lab) = \{\{1, 2\}, \{5\}, \{3\}, \{4\}\}$
Example: Division by SCC

\[
S(G[1, 2], lab) = \{\{1, 2\}, \{2\}, \{1\}\}
\]

\[
S(G[5], lab) = \{\{5\}\}
\]

\[
S(G[3, 4], lab) = \{\{3\}, \{4\}, \{3\}\}
\]
Algorithm
Divide an Conquer

Example: Division by SCC

\[S(G[1, 2], \text{lab}) = \{\{1, 2\}, \{2\} \{1\}\} \]
\[S(G[5], \text{lab}) = \{\{5\}\} \]
\[S(G[3, 4], \text{lab}) = \{\{3\} \{4\}, \{4\} \{3\}\} \]

Then,

\[S(G, \text{lab}) = S(G[1, 2], \text{lab}) \circ_n S(G[5], \text{lab}) \circ_n S(G[3, 4], \text{lab}) \]
\[= \{\{1, 2\} \{5\}, \{2\} \{1\} \{5\}\} \circ_n \{\{3\} \{4\}, \{4\} \{3\}\} \]
\[= \{\{1, 2\} \{5\} \{3\} \{4\}, \{1\} \{2\} \{5\} \{3\} \{4\}, \{1, 2\} \{5\} \{4\} \{3\}, \{1\} \{2\} \{5\} \{4\} \{3\}\} \]
Bridges

Divide by Bridges

Let \((G, \text{lab})\) a connected digraph, \(G_U\) the underlying digraph of \(G\) and \(uv \in E(G_U)\) a bridge that divide \(G\) in \(G_1\) and \(G_2\), then

\[
S(G, \text{lab}) = S(G_1, \text{lab}|_{A(G_1)}) \circ \{u,v\} S(G_2, \text{lab}|_{A(G_2)})
\]
Example: Division by Bridges
Example: Division by Bridges
Example: Division by Bridges
Example: Division by Bridges

\[S_1 \circ_{nrm,4} S_2 = \{\{1, 2, 3\}, \{3\}\{1, 2\}, \{3\}\{1\}\{2\}\} \circ_{nrm,4} \{\{6\}\{5\}\{4\}, \{6\}\{4\}\{5\}\}\]

\[
\begin{align*}
\{1, 2, 3\}\{6\}\{5\}\{4\} & \quad \{6\}\{5\}\{4\}\{1, 2, 3\} & \quad \{6\}\{5\}\{4, 1, 2, 3\} \\
\{3\}\{1, 2\}\{6\}\{5\}\{4\} & \quad \{6\}\{5\}\{4\}\{3\}\{1, 2\} & \quad \{3\}\{6\}\{5\}\{4, 1, 2\} \\
\{3\}\{1\}\{2\}\{6\}\{5\}\{4\} & \quad \{6\}\{5\}\{4\}\{3\}\{1\}\{2\} & \quad \{3\}\{1\}\{6\}\{5\}\{4, 2\} \\
\{1, 2, 3\}\{6\}\{4\}\{5\} & \quad \{6\}\{4\}\{5\}\{1, 2, 3\} & \quad \{6\}\{4, 1, 2, 3\}\{5\} \\
\{3\}\{1, 2\}\{6\}\{4\}\{5\} & \quad \{6\}\{4\}\{5\}\{3\}\{1, 2\} & \quad \{3\}\{6\}\{4, 1, 2\}\{5\} \\
\{3\}\{1\}\{2\}\{6\}\{4\}\{5\} & \quad \{6\}\{4\}\{5\}\{3\}\{1\}\{2\} & \quad \{3\}\{1\}\{6\}\{4, 2\}\{5\}
\end{align*}
\]
Example: UpdateLabel

```
Algorithm

Example

Example: UpdateLabel

```

Lilian Salinas (U. Concepción)

Update schedules in Boolean networks

Marseille 2017
Example: UpdateLabel

```
Example: UpdateLabel
```

```
Lilian Salinas (U. Concepción)   Update schedules in Boolean networks   Marseille 2017
```
Example: UpdateLabel

Algorithm

Example
Example: UpdateLabel

Algorithm

Example

Update schedules in Boolean networks

Marseille 2017 27 / 31
Example: UpdateLabel
Example: UpdateLabel
Example: UpdateLabel

Algorithm

Example

Lilian Salinas (U. Concepción) Update schedules in Boolean networks Marseille 2017 27 / 31
Example: UpdateLabel
Example: UpdateLabel

Algorithm

Example

Update schedules in Boolean networks

Lilian Salinas (U. Concepción) Update schedules in Boolean networks Marseille 2017 27 / 31
Example: UpdateLabel

\[
\begin{align*}
&\oplus \quad \ominus \\
&\ominus \quad \oplus
\end{align*}
\]
Example: UpdateLabel
Results

| Graph | Nodes | Arcs | $|S(G, \text{lab})|$ | SimpleLabel | Label |
|-------|-------|------|----------------|-------------|-------|
| K_3 | 3 | 6 | 13 | 0.02 | 0.02 |
| K_5 | 5 | 20 | 541 | 0.18 | 0.13 |
| K_7 | 7 | 42 | 47293 | 140.76 | 0.79 |
| K_8 | 8 | 56 | 545835 | > 22200.00 | 1.90 |
| P_{10} | 10 | 18 | 19683 | 4.43 | 0.02 |
| P_{12} | 12 | 22 | 177147 | 313.68 | 0.02 |
| P_{50} | 50 | 98 | 3^{49} | – | 0.09 |
| P_{200} | 200 | 398 | 3^{199} | – | 0.17 |
Results for the network of mammalian cell cycle

<table>
<thead>
<tr>
<th>SimpleLabel</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>(sec)</td>
<td>(sec)</td>
</tr>
</tbody>
</table>

Number of update schedule: 466 712 5.230 2.966
Number of extensions: 1 440 0.016 0.033

Finally, only 216 non-equivalent update schedules have this cycle as an attractor.
 References

