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ABSTRACT

0-Hyperbolic metric spaces have been defined by M. Gro-
mov in 1987 via a simple 4-point condition: for any four
points u, v, w, z, the two larger of the distance sums d(u, v)+
d(w, z),d(u, w) + d(v, x),d(u, x) + d(v,w) differ by at most
2§. They play an important role in geometric group theory,
geometry of negatively curved spaces, and have recently be-
come of interest in several domains of computer science.

Given a finite set S of points of a d-hyperbolic space, we
present simple and fast methods for approximating the di-
ameter of S with an additive error 26 and computing an ap-
proximate radius and center of a smallest enclosing ball for S
with an additive error 34. These algorithms run in linear time
for classical hyperbolic spaces and for §-hyperbolic graphs
and networks. Furthermore, we show that for d-hyperbolic
graphs G = (V, E) with uniformly bounded degrees of ver-
tices, the exact center of S can be computed in linear time
O(|E]). We also provide a simple construction of distance
approximating trees of §-hyperbolic graphs G = (V, E) on
n vertices with an additive error O(dlog, n). This construc-
tion has an additive error comparable with that given by M.
Gromov for n-point §-hyperbolic spaces, but can be imple-
mented in linear time O(|E|) (instead of O(n?)). Finally, we
establish that several geometrically defined classes of graphs
have bounded hyperbolicity.

Categories and Subject Descriptors: F.2.2 [Analy-
sis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems

General Terms: Algorithms, Theory.
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1. INTRODUCTION

Given a finite set S of points of a metric space (X, d), the
diameter diam(S) of S is the maximum distance between
any two points of S. A diametral pair of S is any pair of
points z,y € S such that d(z,y) = diam(S). For a point
x € X, the set Fs(x) of furthest neighbors of S consists of
all points of S located at the maximum distance from x. The
eccentricity eccs(z) of the point x € X is the distance from
z to any point of Fs(z). The center C(S) of S is the set of
all points of X having minimum eccentricity; the points of
C(S) are called central points. The radius rad(S) of S is
the eccentricity of central points. In other words, rad(S) is
the smallest radius of a ball of (X, d) enclosing all points of
S (recall that a (closed) ball B(c,r) of radius r centered at
c € X consists of all points x € X at distance at most r to
¢, ie., B(c,r) ={z € X :d(c,x) <r}).

Computing the diameter, the radius, and the center of a
point set in geometric or discrete metric spaces are basic
algorithmic problems in computational geometry and graph
theory having numerous applications in operation research,
data clustering, and analysis of complex networks (social
networks and the internet). In computational geometry,
the diameter and center problems have been investigated for
point sets in two-, three-, or high-dimensional vector spaces
endowed with usual metrics [17, 22, 38, 42] and for polyg-
onal or polyhedral domains endowed with the geodesic [31,
41] or link metrics [19, 35, 46] (the cited papers represent
just a small sample of references). For graphs and networks,
the problems were introduced by Hakimi [30], and efficient
algorithms for these problems are known for several classes
of graphs [6, 13, 15, 18, 21]. Quite surprisingly, most of these
algorithms are based on geometric and metric properties of
classes of graphs in question.
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adjacent vertices and the center of a tree-network is a sin-
gle point. It is folklore that the diameter diam(S) of a
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Figure 1: Realization of a 4-point metric in the rec-
tilinear plane.

set S in a tree or a tree-network 7' can be found in lin-
ear time by running the following simple algorithm: pick
an arbitrary point or vertex w of T, run a Breadth-First-
Search (BFS) starting from u to find v € Fs(u), then run
a second BFS starting from v to find w € Fs(v). Then
d(v,w) = diam(S), i.e., v,w is a diametral pair of S. To
find the center of S it suffices to take the middle point ¢ of
the unique (u,v)-path if T" is a tree-network or to take one
or two adjacent middle vertices of this path if T is a graphic
tree. This shows that diam(S) = 2rad(S) in tree-networks
and diam(S) = 2rad(S) or 2rad(S) — 1 in trees.

In this paper, we establish that this approach can be
adapted to provide fast and accurate approximations of the
diameter, radius, and center of finite sets S of d-hyperbolic
geodesic spaces and graphs. We show that if v € Fs(u)
and w € Fs(v), then d(v,w) > diam(S) — 26 and that
rad(S) < d(v,w)/24 3. We also prove that the center C(S)
of S is contained in the ball of radius 56 (56 + 1 for graphs)
centered at the middle point ¢ of any (v, w)-geodesic. This
provides a linear time algorithm for computing the center of
d-hyperbolic graphs with uniformly bounded degrees of ver-
tices. We also give a simple linear-time construction of dis-
tance approximating trees of §-hyperbolic graphs G = (V, E)
on n vertices with an additive error O(d log, n). Finally, we
establish that several geometrically defined classes of graphs
have bounded hyperbolicity.

1.1 o-Hyperbolicity

Introduced by Gromov [26], d-hyperbolicity measures, to
some extent, the deviation of a metric from a tree metric.
Recall that a metric space (X, d) embeds into a tree network
(with positive real edge lengths), that is, d is a tree metric,
iff for any four points u, v, w, , the two larger of the distance
sums d(u,v) + d(w, z), d(u, w) + d(v, z), d(u, ) + d(v, w) are
equal. A metric space (X, d) is called §-hyperbolic if the two
largest distance sums differ by at most 26. A connected
graph G = (V, E) equipped with standard graph metric dg
is d-hyperbolic if the metric space (V,d¢) is §-hyperbolic.
Every 4-point metric d (tree-realizable or not) has a canon-
ical representation in the rectilinear plane. In Fig. 1, the
three distance sums are ordered from small to large, thus
implying £ < 7. Then 7 is half the difference of the largest
and the smallest sum, while £ is half the largest minus the
medium sum. Hence, a metric space (X, d) is é-hyperbolic
iff £ does not exceed § for any four points u,v,w,z of X.
0-Hyperbolic metric spaces are exactly the tree metrics. On
the other hand, the Poincaré half space in R¥ with the hyper-
bolic metric is 6-hyperbolic with § = log, 3. Several classes
of geodesic metric spaces are known to be hyperbolic (a met-
ric space (X, d) is called hyperbolic if it is §-hyperbolic for
some constant § and the exact value of § does not matter).

d-Hyperbolic metric spaces play an important role in ge-
ometric group theory and in geometry of negatively curved
spaces [3, 25, 26]. §-Hyperbolicity captures the basic com-
mon features of “negatively curved” spaces like the classical
real-hyperbolic space H¥, Riemannian manifolds of strictly
negative sectional curvature, and of discrete spaces like trees
and the Caley graphs of word-hyperbolic groups. It is re-
markable that a strikingly simple concept leads to such a rich
general theory [3, 25, 26]. More recently, the concept of §-
hyperbolicity emerged in discrete mathematics, algorithms,
and networking. For example, it has been shown empirically
in [44] that the internet topology embeds with better accu-
racy into a hyperbolic space than into a Euclidean space
of comparable dimension. A few algorithmic problems in
hyperbolic spaces and hyperbolic graphs have been consid-
ered in recent papers [16, 23, 24, 34]. Krauthgamer and
Lee [34] present a PTAS for the Traveling Salesman Prob-
lem when the set of cites lie in H*. They also show how to
preprocess a finite subset of a d-hyperbolic geodesic space
with a uniformly bounded local geometry to efficiently an-
swer nearest-neighbor queries with an additive error O(9).
Chepoi and Estellon [16] establish a relationship between
the minimum number of balls of radius R + 2§ covering a
finite subset S of a J-hyperbolic geodesic space and the size
of the maximum R-packing of S and show how to compute
such coverings and packings in polynomial time.

1.2 Related work on diameters and centers

The simple schema for computing the diameters and cen-
ters of trees has been used several times in more general con-
texts. For example, Malandain and Boissonnat [37] called
one computation of a furthest neighbor a FP scan and use
repetitive FP scans to approximate or compute the Eu-
clidean diameter of high-dimensional pointsets ([18] consider
a similar approach for fast approximation of diameter of
some classes of graphs). Lenhart et al. [35] establish that
the diameter and radius of a simple polygon P with the link
metric satisfies the inequality diam(P) > 2rad(P) — 2 and
use this relationship to find a simple approximation of the
link center of P in O(nlogn) time and to compute it in
O(n?) time (O(nlogn)-time algorithms for computing the
link center and link diameter have been presented in [19,
46]). The papers [11, 12] show that a similar relationship
holds for the diameter and radius of a simple rectilinear poly-
gon with the rectilinear link metric (recently this result has
been rediscovered by Magazanik and Perles [36] in the more
general context of simply connected planar domains). It was
also shown in [11, 12] that for rectilinear link distance, as for
trees, after two FP scans, the returned distance d(v,w) is a
good approximation of the diameter of P and that a cut ¢
passing via a middle edge of any shortest (v, w)-path is close
to the center of P. Then using methods of computational
geometry it is possible to compute in linear time a central
point of P (another linear time algorithm for this problem
has been proposed in [39]). As shown in [13], the approach
to link centers can be appropriately modified to compute the
centers of chordal graphs (graphs in which all induced cycles
have length 3) in linear time O(|E|). It was also shown that
diam(G) > 2rad(G) — 2 holds for such graphs. Although
d(v,w) gives an approximation of the diameter of a chordal
graph G with an additive error < 1, computing the exact
diameter of G in subquadratic time seems to be not easier
than a similar problem for general graphs [2].



As we will show below, the simple polygons or simple rec-
tilinear polygons with link metric as well as some classes
of graphs comprising chordal graphs are 1- or 2-hyperbolic.
Thus, the results of our paper present a general framework
for the properties and methods developed in [11, 12, 13, 18,
35] and some other papers. Our general results, directly ap-
plied to these graphs, are not sharp, which is quite natural,
because the setting of link graphs or chordal graphs allow to
get more accurate results.

2. GEODESIC§-HYPERBOLIC SPACES

Let (X, d) be a metric space. A geodesic segment joining
two points z and y from X is a map p from the segment [a, b]
of length |a — b| = d(x,y) to X such that p(a) =z, p(b) =y,
and d(p(s), p(t)) = |s — t| for all s,t € [a,b]. A metric space
(X, d) is geodesic if every pair of points in X can be joined
by a geodesic. Every graph G = (V, E) equipped with its
standard distance dg can be transformed into a geodesic
(networklike) space (X, d) by replacing every edge e = (u, v)
by a segment [u,v] of length 1; the segments may intersect
only at common ends. Then (V,dg) is isometrically embed-
ded in a natural way in (X, d). More generally, any polygo-
nal, simplicial, or cubical complex can be transformed into
a geodesic metric space by introducing an intrinsic metric
on its geometric realization; for details see [9].

In case of geodesic metric spaces, there exist several equiv-
alent definitions of §-hyperbolicity involving different but
comparable values of ¢ [3, 9, 25, 26]. A geodesic triangle
A(z,y, z) with vertices z, y, z € X is union [z, y|U[z, z]U[y, #]
of three geodesic segments connecting these vertices. Let
mz be the point of the geodesic segment [y, z] located at
distance «y = (d(y,z) + d(y, z) — d(z, z))/2 from y. Then
mg is located at distance . := (d(z,y) +d(z,z) —d(y,x))/2
from z because oy + a. = d(y, z). Analogously, define the
points my € [z, z] and m. € [z,y] both located at distance
oz = (d(z,y) +d(z, z) — d(y, z)) /2 from z; see Fig. 2 for an
illustration. There exists a unique isometry ¢ which maps
A(z,y, z) to a star Y(x',y’, 2") consisting of three solid seg-
ments [z',m'], [y, m'], and [z',m] of lengths as,a,, and
«., respectively. This isometry maps the vertices z,y, z of
A(z,y, ) to the respective leaves x’,y', 2’ of T(z',v’, 2’) and
the points m,, m,, and m. to the center m of this tripod.
Any other point of Y(z',y’,2") is the image of exactly two
points of A(z,y,z). A geodesic triangle A(z,y, z) is called
0-thin if for all points u,v € A(z,y, 2), ¢(u) = p(v) implies
d(u,v) < 4. A geodesic triangle A(x,y, z) is called J-slim
if for any point w on the side [z,y] the distance from u to
[x,2] U [z,y] is at most ¢. The notions of geodesic triangles,
6-slim and J-thin triangles can be also defined in case of
graphs. The single difference is that for graphs, the center
of the tripod is not necessarily the image of any vertex on
the geodesic of A(z,y, z). Nevertheless, if a point of the tri-
pod is the image of a vertex of one side of A(z,y, z), then it
is also the image of another vertex located on another side of
A(z,y, z). The following result shows that hyperbolicity of a
geodesic space is equivalent to having thin or slim geodesic
triangles (the same result holds for graphs).

PROPOSITION 1. [8, 9, 26, 25] Geodesic triangles of
geodesic §-hyperbolic spaces are 46-slim and 45-thin. Con-
versely, geodesic spaces with J-thin triangles are 26-
hyperbolic and geodesic spaces with §-slim triangles are 89-
hyperbolic.

m
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Figure 2: A geodesic triangle A(z,y,z), the points
My, My, M, and the tripod Y(2',y’, 2)

Gromov [26, 25] established that any §-hyperbolic metric
on n points can be approximated in O(n?) time by a tree-
metric with an additive error O(dlog, n) :

THEOREM 1. For a d-hyperbolic space (X,d) on n points
with a root-point s there exists a weighted tree T and a map-
ping ¢ : X — T such that dr(e(s), ¢(x)) = d(s,z) for any
z € X and d(z,y) — 20logy n < dr(p(x), p(y)) < d(z,y) for
any z,y € X.

3. DIAMETERS, RADII, AND CENTERS

3.1 Some properties ob-hyperbolic spaces

In this subsection, we establish two new metric proper-
ties of d-hyperbolic spaces which will be used in subsequent
subsections on diameters and centers.

LEMMA 1. Let (X,d) be a d-hyperbolic space and
x,y,v,u be its four arbitrary points. If d(v,u) >
max{d(y,u),d(z,u)}, then d(z,y) < max{d(v,z),d(v,y)} +
206.

ProoF. Consider the canonical realization of the 4-point
metric space {u,v,z,y} in R? consisting of a rectangle R
and four segments sy, Sy, Sz, and s, incident to u,v,x, and
y, respectively as shown in Fig. 1. Denote by d., dy, ds, and
dy the lengths of the segments s, sv, sz, and s, respectively.
By definition of §-hyperbolicity, we have £ < .

First suppose that the segments s, and s, are inci-
dent to opposite corners of the rectangle R (then other
two segments are incident to two other opposite corners
of R). Then d(u,v) = du +n+ & + dy and d(z,y) =
dz +n + &£ + dy. Assume without loss of generality that
d(u,z) = dy + 1+ dp and d(u,y) = dy + £ + dy. We have
d(u,v) > max{d(u,x),d(u,y)}. From previous equalities we
conclude that & 4+ d, > d,. Hence, we obtain

dv,y) =dv+n+dy > de —E+n+dy
=ds+&{+n+dy —2¢

Now suppose that the segments s, and s, are incident to
corners of R defining a side of length & of R. Assume without
loss of generality that the segments s, and s, are incident
to opposite corners of R. Then, d(u,v) = du + & + d, and
d(u,y) = dy + £ + 1+ dy. From these equalities and since
d(u,v) > d(u,y), we conclude that d, > n + dy. Hence,

dw,2) =dy +E+n+de > dy +E+ds + 21
=d(z,y) +2n > d(x,y).

Finally, suppose that the segments s, and s, are incident
to corners of R defining a side of length n of R. Assume
without loss of generality that the segments s, and s, are
incident to opposite corners of R. Then, d(u,v) = du+n+ds



and d(u,z) = dy + £ + 1+ de. Since d(u,v) > d(u,x), we
conclude that d, > € + d,. Therefore,

d(v,y) =dv +&+n+dy > ds +26+n+dy

Thus, in all three cases, we
max{d(v,z),d(v,y)} > d(z,y) —26. O

obtain  that

Next, we establish a Helly-type property for balls in 6-
hyperbolic geodesic spaces and graphs. This result was
first proved in [16] in case of geodesic spaces with d-thin
geodesic triangles. Since geodesic triangles of a d-hyperbolic
space are only 44-thin [3, 25], in order to get a sharper re-
sult we present a proof employing the basic definition of
0-hyperbolicity. Let (X, d) be a §-hyperbolic geodesic space
or graph. Let S be a finite subset of points of X and let
r:S — R (r:S — Nin case of graphs) be a radius func-
tion associating with each point s € S a positive number
r(s). We say that a subset S’ of S is r-dominated by a point
c€ X if d(c,s) < r(s) for each s € S’. For each point = € 5,
define the set Sy := {y € S : r(z) + r(y) > d(z,y)}. We
continue with the following important auxiliary result.

LEMMA 2. For any finite or compact subset S of points
of a d-hyperbolic geodesic space (X,d) and for any radius
function r : S — RT, there exist two points x € S and c € X
such that d(c,y) < r(y) + 29 for any point y € Sg, i.e., the
set Sy 1s (14 20)-dominated by c. An analogous result holds
for any finite subset S of vertices of a §-hyperbolic graph G
and for any radius function r : S — N

Proor. If G is a graph, then we consider it as a geodesic
space as defined above. Denote the resulting metric by d
(notice that d(u,v) = de(u,v) if u, v are vertices of G). Let
z be an arbitrary point of X (an arbitrary vertex of G) and
let © be a point (vertex) of S maximizing the value M :=
d(xz,z) — r(z) (such a point exists because S is compact).
If M <4, then z (r + d)-dominates all points of S and we
can set ¢ := z. Suppose now that M > §. Pick a geodesic
segment [z, z] between x and z, and let ¢ be the point of [z, 2]
located at distance r(z) from z. (If G is a graph, since r(x)
is an integer, c is a vertex of G.) Consider any y € Sq, i.e.,
y is a point of S such that r(x) 4+ r(y) > d(z,y). We assert
that d(y, c) < r(y)+ 24. To show this, pick any two geodesic
segments [z, y] and [y, z] between the pairs z,y and y, z. Let
A(z,y,2z) = [z,y] U [z, 2] U [y, z] be the geodesic triangle
formed by the three geodesic segments and let mg, m,, and
m be the three points on these geodesics as defined above.
Notice that if G is a graph, then m,, my, and m. are not
necessarily vertices of G. We distinguish between two cases.

First suppose that ¢ belongs to the portion of [z, z] com-
prised between the points z and my, ie., r(z) < az. Let
e = d(x,my) — d(x,c). Consider the three distance sums
defined by the quadruplet x,y, ¢, z. We have

d(1’7y) + d(C, Z) = oz + Qy +e+ Az,
d(z,z) +d(c,y) = r(z) + € + a- + d(c, y),
d(z,c) +d(y, z) = r(x) + oy + .

Since az > r(x), we conclude that d(z,y)+d(c, z) > d(z,c)+
d(y, z). Notice also that d(z, z) + d(c¢,y) > d(z,c) + ( 2)
because ay + a. = d(y,2) and d(y, z) < d(z,c) + d(c, )

a: + €+ d(c,y) by triangle inequality. If d(z,y) + d(c z) >
d(z,z) + d(c,y), then az + ay > r(z) + d(c,y). Hence
d(c,y) < d(z,y) — r(z) < r(y), establishing the required

property. Now, let d(z,z2) + d(c,y) > d(z,y) + d(c, 2).
By §-hyperbolicity, we obtain d(z, z) + d(c,y ) —d(z,y) —
d(c,z) < 26, yielding r(z) + d(c,y) — d(z,y) < 24. Since
d(z,y) < r(;r)—i—?"( ), we obtain d(c, y) < d(z,y)+20—7r(z) <
r(x) + r(y) + 20 — r(z) = r(y) + 20, establishing that y is
(r 4+ 2d)-dominated by c.

Now suppose that ¢ belongs to the portion of [z, z] com-
prised between z and my, ie., a, < r(z). Let again
e = d(c¢,my). The choice of the vertices x and z yields
d(y,z) —r(y) < d(z,z) — r(z). Since d(z, z) = oz + o and
d(y,z) = ay + a, we conclude that ay, — r(y) < az — r(z).
Thus € = d(c,my) = r(z) — az < r(y) — ay. The three
distance sums for the quadruplet x,y, z, ¢ have the form:

d((l’,y) + d(C, Z) = az + Qy — € =+ Qy,
d(z,z) +d(c,y) = az + oz +d(c,y),
d(iE’,C) +d(y,Z) =z +e+ Oy + .

Obviously, we have d(z,y) +d(c, z) < d(z,c) + d(y, z). If the
second distance sum takes the smallest value, then d(z, z) +
d(e,y) < d(z,y) + d(c,z) < r(z) + r(y) + d(z,2) — r(z),
yielding d(c,y) < r(y) and we are done. Now, let the first
sum be the smallest one. First, if d(z, z)+d(c,y) > d(z,c)+
d(y, z), then §-hyperbolicity and ¢ < r(y) — a, imply that

dlc,y) <e+ay+25 <r(y) —ay + ay + 26 =r(y) + 26.

On the other hand, if d(z,z) + d(c,y) < d(z,c) + d(y, 2),
then £ < r(y) — ay implies that

dle,y) e+ oy <r(y) —ay +ay =r(y).
In both cases we conclude that d(c,y) < r(y) +26. O

The following result can be viewed as an analog of the
classical Helly property for balls.

PROPOSITION 2. Let S be a finite or a compact subset
of a d-hyperbolic geodesic space (X,d) or a §-hyperbolic
graph G = (V,E). Letr : S — R" (orr : S — N for
graphs) be a radius function such that the balls of the fam-
ily F = {B(z,r(x)) : © € S} pairwise intersect. Then the
balls {B(z,r(z) + 20) : x € S} have a nonempty common
intersection.

PRrROOF. Since d(z,y) < r(z)+r(y), for each pair z,y € S,
the equality S; = S holds for the center = of any ball. By
Lemma 2, the set S is (r + 2d)-dominated by a single point
(vertex) c. Obviously ¢ belongs to all balls B(z,r(z) + 26),
x € S, establishing the result. [J

Note that a similar result with 1 instead of 26 has been
established in [35] for balls of simple polygons endowed with
the link distance.

3.2 Diameters and radii

In this subsection, we use the properties established in
previous subsection to get fast approximations for diameters
and radii of finite subsets S of §-hyperbolic spaces (X, d).

We start with the analysis in d-hyperbolic spaces (X, d)
of the simple heuristic for computing a diametral pair in
trees using two FP scans. Recall, it consists in picking any
point u of the space X, finding v € Fs(u), then finding
w € Fs(v), and returning the pair {v,w}. This algorithm
can be implemented in O(]S]) time if computing the distance
between two points in (X, d) can be done in constant time.
In particular, this is the case when (X, d) is a model of the



hyperbolic plane. On the other hand, in graphs G = (V, E)
(and, more generally, networklike spaces) one FP scan can be
done in O(|E|) time by BFS or Dijkstra’s algorithms. Thus,
in this case the pair {u, v} can be computed in linear O(| E|)
time. It remains to establish how well d(v, w) approximates
the diameter diam(S) of S.

Let z,y be a diametral pair of S. Since v € Fg(u),
we conclude that d(u,v) > max{d(v,z),d(v,y)}. Apply-
ing Lemma 1 to the quadruplet {u,v,z,y}, we deduce that
max{d(v,z),d(v,y)} > d(z,y) — 2. Now, since d(v,w) =
eccs(v) > max{d(v,z),d(v,y)} and d(z,y) = diam(S), we
obtain the inequality d(v,w) > diam(S) — 26. Conclud-
ing, we obtain the following result which holds for all §-
hyperbolic spaces (X, d) :

PROPOSITION 3. For a finite subset S of a d-hyperbolic
space (X,d) and any point u € X, if v € Fs(u) and w €
Fs(v), then d(v,w) > diam(S) — 26. The pair {v,w} can be
computed using O(|S|) distance calculations. If S C H?, then
{v,w} can be computed in O(|S|) time. For a d-hyperbolic
graph G = (V, E) the pair {v,w} can be computed in O(|E|)
time.

From the triangle inequality it immediately follows that
the inequality diam(S) < 2rad(S) holds for all metric
spaces. Now, we will establish a stronger relationship be-
tween diameters and radii of J-hyperbolic geodesic spaces
and graphs.

PROPOSITION 4. For any finite subset S of a geodesic §-
hyperbolic space or d-hyperbolic graph, we have diam(S) >
2rad(S) — 46 and diam(S) > 2rad(S) — 46 — 1, respectively.

PROOF. First consider the case of geodesic spaces (X, d).
For each point s € S consider the ball B(s,diam(S)/2) of
radius diam(S)/2 centered at s. These balls pairwise in-
tersect because for any pair of points 5,8 € 8 we have
d(s,s") < diam(S) = diam(S)/2 + diam(S)/2. By Propo-
sition 2, there exists a point ¢ € X belonging to all balls
of radius diam(S)/2 + 2§ centered at the points of S. This
implies that rad(S) < ecc(c) < diam(S)/2 + 20, yielding
diam(S) > 2rad(S) —46. Now, in case of graphs G = (V, E),
in order to ensure that the balls centered at vertices of
S pairwise intersect in V' we must take balls of radius
diam(S)/2 if diam(S) is even and of radius |diam(S)/2|+1
if diam(S) is odd. Then the same reasoning yields the in-
equality diam(S) > 2rad(S) —46 —1. O

Combining the two previous results, we obtain that, if
v € Fs(u) and w € Fs(v), then d(v,w) > 2rad(S) — 64 for
geodesic d-hyperbolic spaces and d(v, w) > 2rad(S) — 6§ — 1
for d-hyperbolic graphs. This provides a fast approximation
of the radius of S':

COROLLARY 1. For any finite subset S of a d-hyperbolic
geodesic space or graph, we have rad(S) < d(v,w)/2 + 34
and rad(S) < |d(v,w) + 1)/2] + 36, respectively.

3.3 Centers

Here we show that the center C(S) of S is contained
in the ball B(c,5d) centered at the middle point ¢ of any
geodesic between the points v, w defined in previous subsec-
tion. In other words, B(c,5d) can be viewed as a corset [1]
for the center problem in d-hyperbolic geodesic spaces (the
ball B(c,56 4+ 1) for graphs). First we establish an upper
bound on the diameter of the center C'(5).

Figure 3: To the algorithm

PROPOSITION 5. diam(C(S)) < 4§ for d-hyperbolic
geodesic spaces and diam(C(S)) < 46 + 1 for d-hyperbolic
graphs.

PRrROOF. Consider the case of geodesic spaces (the proof
for graphs is analogous up to ceiling). Pick z,y € C(S) and
let z be a middle point of any geodesic between x and y. Pick
any furthest neighbor s of z. Then d(z, s) = ecc(z) > rad(S).
On the other hand, d(z,s) < rad(S) and d(y,s) < rad(S)
because z,y € C(S). Hence d(z,s) > max{d(z, s),d(y, s)}.
By Lemma 1 applied to the quadruplet {z,y, z, s}, we con-
clude that d(z,y) < max{d(z, 2),d(z,y)} +26 = d(z,y)/2+
24, showing that indeed d(z,y) < 44. [

In the next “coreset” result, the point ¢ is determined in
the following way: pick any point u of the space (vertex of
the graph), find any furthest neighbor v of u, find any fur-
thest neighbor w of v, and take as ¢ the middle point (a mid-
dle vertex in case of graphs) of any geodesic segment [v, w]
between v and w (for an illustration, see Fig. 3). Let also
¢o be the point (vertex) of [v,w] located at distance rad(S)
from w. Since rad(S) > d(w,c) = d(v,w)/2 > rad(S) — 30,
we conclude that for geodesic spaces, d(c, co) < 36 and that
co is located on the geodesic [c,v] between ¢ and v (for
graphs, d(c,co) < 30 + 1).

PROPOSITION 6. The inequalities ecc(c) < rad(S) + 50
and ecc(co) < rad(S) + 26 hold for all §-hyperbolic geodesic
spaces and graphs. Moreover C(S) C B(c,50) for 6-
hyperbolic geodesic spaces and C(G) C B(c¢,55 + 1) for 4-
hyperbolic graphs.

PROOF. Since d(c,co) < 36, it suffices to show that
ecc(co) < rad(S) + 26. For this, we will apply the proof
of Lemma 2 assuming that r(s) = rad(S) for each point
s € S and that v plays the role of the point z. Since w is
a furthest neighbor of v, the point w € S can be selected
as the point maximizing the difference M = d(v,s) — r(s)
over all s € S. Now, for any point s € S we have d(w, s) <
diam(S) < 2rad(S) = r(w) + r(s), yielding S, = S. Since
¢o is located at distance rad(S) = r(w) from w, by Lemma
2 we deduce that d(co, s) < r(s) + 20 = rad(S) + 20 for each
point s € S. Thus ecc(co) < rad(S) + 29.

Now we will show that C'(S) C B(c, 59) for geodesic spaces
(the proof of similar inclusion for graphs is analogous). Pick
any central point ¢’ € C(S). Then max{d(c’,v),d(c’,w)} <
rad(S). Consider the three distance sums d(v,w) + d(c, ),
d(v,c)+d(c',w), and d(c,w) +d(c’,v) and suppose, without
loss of generality, that d(v,c) + d(c’,w) > d(c,w) + d(c’,v),
i.e., d(c’,w) > d(c’,v). Notice that the difference between
the second and the first sums is d(c’, w) — d(c, w) — d(c, ).
Since d(¢’,w) < rad(S) and d(c,w) > rad(S) — 34, the sec-
ond sum is larger than the first one only if d(c,c’) < 34.



So, suppose that the first sum is larger than the second
sum. Then 0 < d(c,w) + d(c,¢') — d(c',w) < 26. If
d(e,w) > d(c’,w), then necessarily d(c,c’) < 26. On the
other hand, if d(c,w) < d(c’,w), then d(c’, w) —d(c,w) < 3§
because d(c,w) > rad(S)—36 and d(c’', w) < rad(S). In this
case we deduce that d(c, ¢’) < 54. This shows that in all cases
d(c,c") < 56 holds, establishing the desired inclusion. []

Notice that since rad(S) is unknown, we cannot find cg
algorithmically. In case of graphs with bounded hyperbol-
icity, we can compute in O(|E|) time the eccentricities of
all 30 vertices of the geodesic segment [c, w] N B(c, 30) and
return the vertex c{ with smallest eccentricity, instead of cg.
Clearly, ecc(cy) < ecc(co) < rad(S) + 25. For §-hyperbolic
graphs or networks G = (V,E) with uniformly bounded
degrees, the ball B(c,56 + 1) contains a constant number
of vertices (here, we assume that ¢ is bounded by a con-
stant, too) and therefore the center C'(S) can be found in
O(|E]) time by computing the eccentricities of all vertices
of B(c,56 + 1) and choosing among them the vertices with
smallest eccentricity. Notice that the requirement that the
degrees are uniformly bounded is closely related to locally
doubling condition on §-hyperbolic spaces occurring in the
results of Krautghamer and Lee [34].

COROLLARY 2. For a finite subset S C V of a 9-
hyperbolic graph G = (V, E) with mazimum degree A(G) and
d bounded by a constant, a vertex ¢ with ecc(c) < rad(S)+25
can be computed in O(|E|) time and the center C(S) can be
computed in O(|A(G)|*°*1|E|) time. If the degrees of ver-
tices of G are uniformly bounded, then C(S) can be computed
in linear O(|E|) time.

In classical real-hyperbolic spaces H* or other models of
hyperbolic geometry (which are all isometric to ]HI’“), the
distances and the geodesics between points can be com-
puted analytically. For example, in the Poincaré disk model,
the points of the geometry are the points of an open k-
dimensional Euclidean unit disk, and the lines are segments
of circles contained in the disk orthogonal to the boundary
of the disk, or else diameters of the disk. If u and v are two
points of this geometry, then the distance is computed by
the formula

2||u — o]
d(u,v) = arccosh(1 + ),
(1= {lul?)(X = [[o][?)
where ||-|| is the usual Euclidean norm. Thus in all classical

models, the points v,w € S and the middle point ¢ € [v, w]
with ecc(c) < rad(S)+58 can be found using O(]S|) distance
computations. Let ¢’ be the point of the geodesic [v,w]
located between ¢ and v at distance 34 from c. The distance
function on H* is convex, therefore the point ¢} € [c, ¢’] with
ecc(cy) < rad(S) + 2§ can be found by running a binary
search on the geodesic segment [c, ¢'] = [c,v] N B(c, 38). For
each tested point we compute its eccentricity and return the
point with smallest eccentricity. This way, we can find a
point ¢y € [c, '] with ecc(cy) < rad(S) + (2 + €)§ using
log, % eccentricity computations.

For general d-hyperbolic geodesic spaces (for example,
some polyhedral complexes), our algorithm needs a sub-
routine for computing distances and geodesics. Notice also
that if [v,w] is available, then the point ¢j with ecc(c)) <
rad(S) + (24 €)d can be found by subdividing the geodesic
segment [c, ¢'] = [¢,v] N B(c,3d) into segments of length 2¢
and computing the eccentricities of the subdivision points.

COROLLARY 3. For a finite subset S of a d-hyperbolic
geodesic space (X, d), a point c with ecc(c) < rad(S)+56 can
be found using O(|S|) distance computations and one com-
putation of a geodesic segment. For given € > 0, a point cj
with ecc(cy) < rad(S) + (2 + €)d can be found by computing
the eccentricity of O(L) points (O(log, 1) points if S C HF).

4. APPROXIMATING TREES

In this section, we present a simple method which con-
structs for any d-hyperbolic graph G = (V, E) with n ver-
tices a distance O(dlogn)-approximating tree in optimal
time O(|E|). A tree T = (V,F) is called a distance -
approximating tree of a graph G = (V,E) if |da(x,y) —
dr(z,y)| < k for each pair of vertices z,y € V. Our result
and the definition of a distance approximating tree are com-
parable with Theorem 1. The approximation of distances
used in Theorem 1 is stronger because the mapping ¢ is non-
expansive. On the other hand, distance approximating trees
have the same set of vertices as G while the trees occurring
in the theorem of Gromov may have Steiner points (in fact
our construction can be easily modified to be non-expansive
by accepting edges of length 1/2 and Steiner points). The
error incurred by our result is slightly weaker (but of the
same order), however the construction of our approximating
tree T' is simpler and can be done in linear O(|E|) time while
the construction in Theorem 1 needs O(|V'|?) time.

We start with a property of §-hyperbolic graphs formu-
lated and proven in several texts on Gromov hyperbolic
spaces (in particular, in [9]) for all é-hyperbolic spaces. This
result is used in the proof of the fundamental property of -
hyperbolic spaces established in [26] that geodesics in such
spaces diverge at exponential rate; for a proof, see also [3, 9].
For a simple path p of a graph G, let l(p) denote its length.

PROPOSITION 7. Let G = (V, E) be a graph with §-thin
geodesic triangles and let p be a simple path connecting two
vertices p,q of G. If [p,q] is a geodesic segment between p
and q, then for every vertex x € [p,q|, the distance from x
to a closest vertex y of p is at most 1 + dlog, I(p).

PRrROOF. To explain why dlog, [(p) occurs in this result,
we sketch its (nice) proof, at the same time bringing it some
computer science flavor (a detailed proof is given on p. 401
of [9]). Take the cycle constituted by the geodesic [p, q] and
the path p and “triangulate” it in the following way. If p
consists of a single edge, then return this edge. Otherwise,
pick the middle vertex r of the path p and include in the
triangulation the geodesic triangle A having [p, q] and two
geodesic segments [p,r] and [r, g] as sides. Then recursively
apply this algorithm twice to the geodesic segments [p, 7] and
[r,q] and the subpaths p’ and p” of p comprised between p
and r, and r and q, respectively. The resulting triangulation
T can be viewed as a binary tree rooted at A whose nodes
are the triangles of 7 and two triangles are adjacent iff they
share a common geodesic segment. Since the length of the
current simple path is divided by 2 at each iteration, the
number of levels h of this binary tree satisfies the inequality
I(p)/2"* <1 <1(p)/2".

For a vertex = € [p, q], the distance from z to one of the
sides [p,r] or [r,q] of the geodesic triangle A is at most 4,
because A is 6-thin. Suppose that de(z,z’) < § for a vertex
x' € [p,r]. Let A’ be the geodesic triangle sharing the side
[p, 7] with A. Repeating recursively the same operation to z’
and A’, we will construct a path from the initial vertex = to



Figure 4: To the proof of Proposition 8

a vertex y of p consisting of at most h geodesic segments of
length at most ¢ each. Hence da(z,y) < 1+ dlog,i(p). O

Let G = (V, E) be a connected graph with a distinguished
vertex s. A layering of G with respect to s is the partition
of V into the spheres L' = {u € V : d(s,u) = i}, i =
0,1,2,... A layering partition of G is a partition of each
L’ into clusters Li,..., L} such that two vertices u,v € L’
belong to the same cluster L;- if and only if they can be
connected by a path outside the ball B;_1(s) of radius ¢ — 1
centered at s (this partition has been introduced in [8, 14]
and also used in [20]). We continue by showing that if G is
a graph with n vertices and with J-thin geodesic triangles,
then the diameters of clusters of a layering partition of G
are bounded by a function of J and log,n. Set A, := 4 +
30 + 26 log, n.

PROPOSITION 8. Let L; be a cluster of a layering parti-
tion of a graph G with d-thin geodesic triangles and n ver-
tices, and let u,v € Lj. Then dg(u,v) < As,.

PRrROOF. Suppose, by way of contradiction, that u,v be-
long to a common cluster L;- but dg(u,v) > An. Let p be
a simple path connecting the vertices u,v outside the ball
B;_1(s). Let [u,v] be a geodesic segment connecting the
vertices u and v. Set r := 2 4+ § + §log, n. On the sphere
L*~" pick two vertices u’,v’ of G such that u’ lies on a
geodesic segment [s,u] between the root s and the vertex
u and v lies on a geodesic segment [s, v] between s and v;
see Fig. 4. Since dg(u,v) > 2dlogy, n + 36 + 4, we conclude
that de(u',v") > §. Since the geodesic triangle formed by
the geodesic segments [s, u], [s,v], [u, v] is d-thin, de(s,u’) =
dg(s,v"), and dg(u',v") > 6, we conclude that d(u',z) < §
for some vertex x of G lying on the geodesic segment [u, v].
By Proposition 7, the path p contains a vertex y such that
da(z,y) < dlogyl(p) +1 < dlogyn + 1. Thus da(s,y) <
da(s,v') +de(u',z) + da(z,y) <i—7+36+ dlogyn + 1.
On the other hand, since y belongs to the path p, we must
have dg(s,y) > 4. Thus i < i—r+ ¢+ dlog,n + 1, hence
2446+ 0dlogon=1r <146+ dlogyn, a contradiction. [

Let I" be a graph whose vertex set is the set of all clusters
L;- in a layering partition of G and two vertices Lj- and L;-/

are adjacent in I' if and only if there exist u € L;- and v € L;l/
such that v and v are adjacent in G. It is shown in [14]
that T" is a tree, called the layering tree of G, and that T is
computable in linear time in the size of G. To construct the
tree T = (V, F), for each cluster C := L} we select a vertex
ve of L'~ which is adjacent in G with at least one vertex
of C' and make vc adjacent in T to all vertices of C. Since
I is a tree, T is a tree as well.

PROPOSITION 9. T = (V, F) is a An-approxzimating tree
for a graph G = (V, E) with §-thin geodesic triangles and n

vertices. In particular, T = (V, F) is a 4\,-approximating
tree for a d-hyperbolic graph.

PRrROOF. It can be easily shown that the tree T' preserves
the distances to the root s, i.e., dr(z,s) = da(z, s) for any
x € V. From Proposition 8, if z,y belong to a common clus-
ter, then dr(z,y) = 2 and dg(z,y) < An. Now, suppose that
2 and y belong to different clusters of T, say z € C' := L;//
and y € C" := L;//I/ Let C := L} be the cluster which is
the nearest common ancestor of C’ and C” in the tree I
By definition of clusters, any path of G connecting the ver-
tices z and y will traverse the clusters on the unique path
P(C',C") of the tree T connecting C’ and C”'. In particular,
any shortest (z,y)-path will intersect the cluster C. Since
da(w,2) > i’ —i and dg(z,y) > i’ — i for any vertex z € C,
we conclude that dg(z,y) > i’ +4” — 2i. On the other hand,
any (z,y)-path of G sharing a single vertex with each cluster
(except C) of the path P(C’,C") and intersecting the clus-
ter C in a shortest path has length at most i’ +i"” —2i + A,
thus i’ +4" — 2i < dg(z,y) <4’ +1i” — 2i + A,. Now, notice
that dr(z,y) =i +i' —2i + 2 or dr(z,y) =i’ +i" — 2i
if the two clusters of P(C’,C") incident to C have the
same neighbor in 7. In both cases, we conclude that
lda(z,y) — dr(z,y)] < An. Now, since geodesic triangles
of a §-hyperbolic graph G are 40-thin, the second assertion
is immediate. [

By using edges of length % and Steiner points, the tree T’
can be easily transformed into a tree T% which has the same
approximating performances and satisfies the non-expansive
property. For this, for each cluster C' := L; we introduce a
Steiner point w¢, and add an edge of length % between any
vertex of C' and wc and an edge of length

and the vertex ve defined above.

% between we

5. GRAPHS WITH BOUNDED HYPER-
BOLICITY

In this section, we establish that two classes of geo-
metric graphs are l-hyperbolic and some other classes of
graphs have bounded hyperbolicity. Notice that in case of
d-hyperbolic graphs, § has the form k/2 for some natural
number k. O-hyperbolic graphs are exactly the graphs in
which all blocks induce complete subgraphs (they distance-
function is a tree-distance). A full characterization of 1/2-
hyperbolic graphs has been given in [4] (see also [33] for
a partial characterization): these are the graphs in which
all balls are convex and which do not contain six isometric
subgraphs. Chordal graphs and distance-hereditary graphs
(graphs in which all induced paths are geodesic paths) are
1-hyperbolic [5, 33].

5.1 Sufficient conditions for hyperbolicity

We continue with several graph-theoretical notions. All
graphs G = (V, E) in this section are connected, undirected,
but not necessarily finite. The interval I(u,v) between two
vertices u and v of G consists of all vertices (metrically)
between u and v: I(u,v) = {x € V : d(u,z) + d(z,v) =
d(u,v)}. The interval I(u,v) is §-thin if d(z,y) < § for all
vertices z,y € I(u,v) such that d(u,z) = d(u,y). An in-
duced subgraph of G is called convez if it includes the inter-
val of G between any of its vertices. An induced subgraph H
of G is isometric if the distance between any pair of vertices



in H is the same as that in G. The ball B(C,r) centered at
set C' is the union of all balls B(c,r) with centers ¢ from C.

Three vertices v1, v2, vs of a graph G form a metric trian-
gle vivous if the intervals I(vi,vs2),I(v2,vs) and I(vs,v1)
pairwise intersect only in the common end vertices. If
d(vi,v2) = d(v2,v3) = d(vs,v1) = k, then this metric tri-
angle is called equilateral of size k. A metric triangle viv2w2
of G is a quasi—median of the triplet x,y, z if the following
metric equalities are satisfied:

d(z,y) = d(z,v1) + d(v1,v2) + d(v2,y),
d(y, z) = d(y, v2) + d(va2,vs3) + d(vs, 2),
d(Z,ZII) = d(z7 1)3) + d(’Ug,’U1) + d(vlv .’E)

Every triplet z, y, z of a graph has at least one quasi-median:
first select any vertex vy from I(z,y) N I(x,z) at maximal
distance to x, then select a vertex v2 from I(y,v1)NI(y, z) at
maximal distance to y, and finally select any vertex vs from
I(z,v1) N I(z,v2) at maximal distance to z. Median graphs
are the graphs in which all metric triangles have size 0 and
any triplet of vertices x,y, z admits a unique quasi-median.
Median graphs are closely related to cubical complexes of
global non-positive curvature [5]. Bridged graphs are the
graphs in which all balls B(S,r) centered at convex sets S
are also convex. It has been shown in [27, 45] that bridged
graphs are exactly the graphs in which all isometric cycles
have length 3. For a detailed account on median structures
and bridged graphs, see the survey [5].

An important class of median graphs is that of plane
graphs in which all inner faces have length 4 and all inner
vertices have degrees > 4. This class of plane median graphs
comprises the graph H(4,5) of the regular {4,5} hyperbolic
tessellation (this is a tiling of the plane by regular hyperbolic
squares, five squares meeting at each vertex) and any sub-
graph of H(4,5) induced by the vertices lying on or inside
the region bounded by a simple cycle of H(4,5) (which we
call (4, 5)-polygons). Among examples of bridged graphs are
the chordal graphs and the plane triangulations in which all
inner vertices have degrees > 6. If we impose that all inner
vertices of such a triangulation have degree 7, then among
such graphs we find the graph H(3,7) of the regular hyper-
bolic tessellation {3, 7} and (3, 7)-polygons. Notice also that
each metric triangle of size k of a bridged graph G defines
an isometric subgraph of G which is isomorphic to the tes-
sellation of the equilateral Euclidean triangle of size k into
equilateral triangles of size 1 (we call it a k-deltoid).

To establish hyperbolicity of a graph G (or of a geodesic
metric space) sometime it is easier to show that geodesic
triangles of G are J-slim or d-thin for some J. We continue
by showing that all graphs G with thin intervals and metric
triangles having bounded sides are hyperbolic. Papasoglu
[40] already proved that graphs with p-thin intervals are
f(u)-hyperbolic for an exponential function f.

PROPOSITION 10. If the intervals of a graph G = (V, E)
are p-thin and the metric triangles of G have sides of length
at most v, then the geodesic triangles of G are (2u + v/2)-
slim and G 1s (16 + 4v)-hyperbolic.

ProOF. Consider a geodesic triangle A(z,y, z) of G and
pick an arbitrary vertex u on the side between x and y.
Let viv2vs be a quasi-median of the triplet x, y, z as defined
above. Now, let v be a vertex on a geodesic path P be-
tween z,y passing via v1 and vz such that d(z,v) = d(z,u).
Since u,v € I(x,y), we have d(u,v) < u. First suppose that

v belongs to the subpath of P between z and wv; or be-
tween ve and y, say the first. Then v € I(z,v1) C I(z,2).
Let w be the vertex on the side [z,z] of A(z,y,2) such
that d(z,w) = d(z,v). Since v,w € I(x,z) and I(z,z)
is p-thin, we have d(v,w) < u. Hence d(u,w) < 2u, es-
tablishing that the distance from u to two other sides of
A(z,y,z) is bounded by 2u + v/2. Now, let v € I(v1,v2).
Since d(v1,v2) < v, the distance from v to v or w2, say
to w1, is at most v/2. Applying the same reasoning to
v1 € I(z,z) as we did in previous case with v, we conclude
that d(u,w) < d(u,v) + d(v,v1) + d(v1,w) < 2u + v/2, es-
tablishing the first assertion. The second assertion follows
from Proposition 1. [

The following two results show that in case of bridged and
median graphs both conditions can be reformulated in terms
of forbidden isometric subgraphs.

COROLLARY 4. If the deltoids of a bridged graph G have
size at most v, then the geodesic triangles of G are (5v/2)-
slim and G is 20v-hyperbolic.

ProOF. We will show that any interval I(u,v) of G is
v-thin. Pick any two vertices z,y € I(u,v) such that
d(u,z) = d(u,y) = k' and d(v,z) = d(z,y) = k", with
k' + k" = d(u,v). We assert that any quasi-median of
the triplet u,z,y has the form u'xy. Suppose not and let
u'z’y’ be a quasi-median of u,z,y such that 2’ # x. Since
x' € I(u,z) and 2’ # x, we infer that d(u,z’) < k’. Thus
d(z',v) > k" because ' € I(u,z) C I(u,v). On the other
hand, ' € I(x,y) and z,y belong to the ball B(v,k") of
radius k" centered at v. This contradicts the convexity of
B(v,k"). Thus any quasi-median of u, z, y has the form u'zy,
yielding d(z,y) < v because u’zy defines a deltoid of size at
most v. [

To establish d-hyperbolicity of a graph G for a small value
of ¢ one has to show that each quadruplet u,v,w,z of G is
0-hyperbolic, i.e., the two largest of distance sums d(u,v) +
d(w, z), d(u, w)+d(v, x), d(u, )+d(v, w) differ by at most 24.
We will assume that d(u,v) + d(w,z) < d(u,w) + d(v,z) <
d(u,z)+d(v, w) and say that the ordered quadruplet (vvzw)
is a quadrangle Q with sides d(u,v), d(v, z), d(z, w), d(w, u).
In all subsequent proofs, we will proceed by induction on
the total distance sum d(u, z) +d(v, w) + d(u, v) + d(u,w) +
d(v,z) + d(w, z). As noticed in [4], the induction hypothesis
guarantees that I(u,v) N I(u,w) = {u}, I(v,u) N I(v,z) =
{v}, I(w,u) N I(w,z) = {w}, I(z,v) N I(z,w) = {z}. In this
case, we say that the quadruplet u, v, w, z satisfies the con-
dition (A).

COROLLARY 5. Any median graph G = (V, E) not con-
taining the rectilinear grid § X § as an isometric subgraph is
d-hyperbolic. In particular, H(4,5) and any (4,5)-polygon is
2-hyperbolic.

Proor. If the quadruplet u, v, w, x satisfies the condition
(A), then d(u,v) = d(w,z) = k and d(u,w) = d(v,z) =
m for some k < m. Hence, the two larger distance sums
differs by 2k. It can be shown by induction on k and m that
G contains an isometric rectilinear grid £ x m having the
vertices u, v, w,x as corners. Thus, k < 4. [



5.2 Graphs of 7-systolic simplicial complexes

A simplicial complex KC is a collection of sets (called sim-
plices) such that o € K and o’ C o implies o/ € K. De-
note by V(K) and E(K) the sets of all 0O-dimensional and
1-dimensional simplices of K. Then G(K) = (V(K), E(K))
is called the graph of K. Conversely, for a graph G one can
derive a simplicial complex K(G) by taking all complete sub-
graphs as simplices. K is a flag complex if any set of vertices
is included in a face whenever each pair of its vertices does.
A flag complex can be recovered from its graph G(K): the
complete subgraphs of G(K) are exactly the simplices of K.
K is called simply connected if it is connected and if every
continuous mapping of the 1-dimensional sphere S' into the
geometric realization |K| of K can be extended to a con-
tinuous mapping of the disk D? with boundary S' into |K|.
The systole of K is the minimum number of edges in a cycle
of G(K) which is a full subcomplex of K. The residue of a
simplex o of K is the union of all simplices containing o.

A k-systolic complex is a simply connected simplicial flag
complex K in which the systole of the residue of each sim-
plex of K is at least k. If £ = 6, such a complex is called
systolic. Systolic complexes have been recently introduced
by Januszkiewicz and Swiatkowski [32] and Haglund [28].
Papers [32, 28, 29] investigate these complexes in relation-
ship with CAT(0) geometry and geometric group theory.
Many results established in [32, 28, 29] concern the metric
and convexity properties of the underlying graphs of systolic
complexes. This is not a surprise because, as it was previ-
ously shown in Theorem 8.1 of [10], the simplicial complexes
derived from bridged graphs G (called bridged complexes)
are exactly the systolic complexes, namely these are sim-
ply connected flag complexes in which the neighborhood of
any vertex does not contain induced 4- and 5-cycles. It was
shown in [32] that the graphs of 7-systolic complexes are
11-hyperbolic, which, as they mention, “is by no means op-
timal”. We continue by showing that these graphs are in
fact 1-hyperbolic.

PRrOPOSITION 11. Graphs of 7-systolic complexes are 1-
hyperbolic.

ProOF. Let G be a graph of a 7-systolic complex. Then
G is bridged and does not contain 6-wheels, i.e., an induced
6-cycle plus an extra vertex adjacent to all vertices of this
cycle. Since any metric triangle xyz of size k of a bridged
graph defines an isometric k-deltoid, we must have k£ < 2,
otherwise G would contain a 6-wheel. Now, notice that the
intervals I(u,v) of G are 1-thin (this is also Lemma 3.4 of
[28]). Indeed, if z,y € I(u,v) with d(u,z) = d(u,y), then,
as noticed in the proof of Proposition 4, any quasi-median
of u,x,y has the form u'xy and any quasi-median of v,z,y
has the form v'zy. Since the metric triangles have size at
most 2, we conclude that d(z,y) < 2. Now, if d(z,y) = 2,
then we will get two deltoids of size 2 with corners u’, z,y
and v’,v,y. Together they will define a 2 x 2 triangulated
lozenge containing a 6-wheel. This shows that d(z,y) = 1.

To establish 1-hyperbolicity of G, pick a quadruplet
u, v, w, x satisfying the condition (A). Additionally, suppose
that among all such quadruplets, let u, v, w, x also minimizes
the perimeter d(u, v)+d(w, z)+d(u, w)+d(v, z) of the quad-
rangle Q = (uvzw). Notice that if one of the sides of @ has
length 1, say d(u,v) = 1, then d(u,z) < d(v,z) + 1 and
d(v,w) < d(u,w) + 1, whence the quadruplet w,v,w,z is
1-hyperbolic. So, suppose that all sides of @ have length

> 2. Since I(u,v) N I(u,w) = {u} by condition (A), any
quasi-median of u,v,w has the form uv’w’. The analogous
conclusion holds for all triplets of u, v, w, x.

Next, we assert that for each vertex, say v, at least one
of two incident sides of @ has length < 3. Suppose not, and
let d(v,u) > 4,d(v,z) > 4. Let uv'w’ and zv"w" be any two
quasi-medians of the triplets u, v, w and z, v, w. Since these
quasi-medians have size < 2, we deduce that d(v,v") > 2
and d(v,v") > 2. Pick vertices a € I(v,v’) and b € I(v,v")
at distance 2 from v. Since v',v"” € I(v,w), we conclude
that a,b € I(v,w). Since I(v,w) is 1-thin, d(a,b) < 1. Anal-
ogously, d(a’,b") < 1 for common neighbors a’ of a,v and ¥’
of v,b. If a = b or a’ = b, we obtain a contradiction with
condition (A). Thus d(a,b) = d(a’,b’) = 1, and the vertices
a,a’,b,b’ define a 4-cycle. Since bridged graphs do not con-
tain induced 4-cycles, either a and b" are adjacent or b and a’
are adjacent. In both cases, we obtain a contradiction with
I(v,u) N I(v,z) = {v}. This contradiction proves our asser-
tion. The same contradiction holds if v = v and v/ = z, or,
more generally if d(v,v") > 2 and d(v,v") > 2. Therefore we
cannot have u,z € I(v,w) or v,w € I(u,z).

Previous assertion implies that at least the smallest dis-
tance sum is < 6. On the other hand, since we cannot have
u,x € I(v,w), if say v ¢ I(v,w), then any quasi-median
of u,v,w has the form uv’w’ with v’ and w’ different from
u. Hence we can find two adjacent neighbors a € I(u,v")
and b € I(u,w’) of u. Since the perimeters of the quad-
rangles obtained by replacing u either with a or with b are
both strictly smaller than the perimeter of @ (and the to-
tal distance sum of new quadruplets is not larger than that
of u,v,w,x), the quadruplets a,v,w,z and b, v, w,x are 1-
hyperbolic. Comparing the evolution of the three distance
sums of these quadruplets with those of u,v,w,x, we note
that in the first case, the smallest distance sum decreases by
1 and the second distance sum remains the same, while in
the second case the smallest distance sum remains the same
and the second distance sum decreases by 1. This means
that either u, v, w,z is 1-hyperbolic as well or that the two
smallest distance sums of u, v, w, x must be equal.

Hence, let 4 <7 :=d(u,v) + d(w, z) = d(u, w) + d(v,z) <
6. If r = 4, then the sides of the quadrangle @ all have
length 2. Since u and z cannot both belong to I(v,w),
we infer d(v,w) < 3. Analogously, d(u,z) < 3, yielding
d(u,z)+d(v,w) <6 =r+2.If r = 6, then the sides of @ all
have length 3. We assert that d(u,z) < 4 and d(v,w) < 4.
Suppose by way of contradiction that d(v,w) > 5. Then any
quasi-median uv'w’ of u,v,w and any quasi-median zv"'w"
of xvw must have size < 1 each. But this implies that
d(v,v') > 2 and d(v,v"”) > 2, which is impossible. Fi-
nally, let 7 = 5 and suppose that d(u,w) = d(w,z) = 2,
d(u,v) = d(v,z) = 3. First notice that d(v,w) < 4, other-
wise, if d(v,w) > 5, we will get the same contradiction as
in previous case. Hence, if d(u,z) < 3, then we are done.
Now suppose that d(u,z) = 4. Then w € I(u,z) and any
quasi-median vu'z’ of vuz has size 2. Let w’ be a common
neighbor of u',z’. Since w’ € I(v/,2") and v', 2’ € B(v,2),
the convexity of the ball B(v,2) implies that d(v,w’) < 2.
Since w’,w € I(u,z) and d(u,w) = d(u,w’) = 2, the fact
that I(u,z) is 1-thin implies that w and w’ are adjacent.
Hence, d(v,w) < d(v,w’) + d(w',w) = 2+ 1 = 3. Thus,
d(u,z) + d(v,w) <443 =7=r+2 holds also in this case.
This establishes the required 4-point condition, proving that
G is 1-hyperbolic. [J



5.3 Link graphs of simple polygons

The link distance [35, 46] d(z,y) between two points z,y
of a simple polygon P of R? is the minimum number of
segments in a polygonal path connecting x and y in P. A
polygon P endowed with link distance can be viewed as a
graph LG(P) = (P, E) (called the link graph of P) having
the points of P as vertices and two vertices x, y are adjacent
iff the segment between x and y belongs to P. It is shown
in [35] that the balls of LG(P) are convex, which indicates
a close relationship of link graphs with bridged graphs and
1/2-hyperbolic graphs. The following result confirms these
ties.

PROPOSITION 12. For any simple polygon P, its link
graph LG(P) is 2-hyperbolic.

ProOOF. Consider an arbitrary but fixed triangulation
T(P) of polygon P, and let T' be the dual graph of that trian-
gulation, which is known to be a tree. Let u,v,w,xz € P be
any quadruplet of LG (P). Denote by U, V, W, X the triangles
of the triangulation T'(P) (nodes of T') containing the points
u, v, w, x, respectively. Root the tree T" at node W and let M
be the lowest common ancestor in 7" of U, V, and X. By the
choice of M, the two paths of T connecting one of the nodes
U,V, X, say X, to two other nodes U,V pass via M. Denote
by (. the distance in LG(P) between z and a closest to x
point of the triangle M. The distances (3., 3., and 3., are de-
fined analogously. Clearly, for any pair of points a, b from the
set {u,v,w,z} except possibly the pair u,v, any link-path
between a and b has to pass via triangle M. This shows that
d(a,b) > Ba+ Bp — 1. Therefore, the two largest sums among
d(z,u) + d(v,w), d(z,v) + d(u, w), and d(z,w) + d(u,v) are
larger than or equal to By + By + Bw + Bz —2 =: F—2. On the
other hand, since the link-distance between any two points
of a triangle is 1, we conclude that d(a,b) < Ba + B + 1
for any pair of vertices a,b from {u,v,w,z}. This shows
that each of the three distance sums is at most 8 + 2. From
the established upper and lower bounds for the two largest
sums, we conclude that they differ by at most 4. Since this
is true for all quadruplets of vertices, the graph LG(P) is
2-hyperbolic. [

The rectilinear link graph RLG(P) of a simple rectilinear
polygon P has the points of P as vertices and x,y € P are
adjacent iff they lie on a common vertical or horizontal line
and the segment between = and y belongs to P (for recti-
linear link metric, see [7]). Analogously to previous result
one can show that the graph RLG(P) is 2-hyperbolic. In
the full version of this paper, we will show that in fact the
graphs LG(P) and RLG(P) are 1-hyperbolic (the proof of
this is more involved).

5.4 Tree-lengthx graphs

We now recall the definition of tree-decomposition intro-
duced by Robertson and Seymour in their work on graph
minors [43]. A tree-decomposition of a graph G is a tree T
whose vertices, called bags, are subsets of V(G) such that:

L Uxev X =VI(G);

2. for all uv € E(G), there exists X € V(T') such that

u,v € X;
3. forall X,Y,Z € V(T), if Y is on the path from X to
ZinT then XNZCY.
The length of tree-decomposition T' of a graph G is
max x cv (1) MaXu,vex da(u,v), and the tree-length of G [20]
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is the minimum, over all tree-decompositions 7" of G, of the
length of T'. The following two results establish a relation-
ship between the d-hyperbolic graphs and the graphs with
bounded tree length.

PROPOSITION 13. If a graph G = (V, E) has a tree de-
composition of length A\, then G is A-hyperbolic.

PrOOF. The proof of this result is quite analogous to the
proof of Proposition 12. Consider a decomposition tree T’
of G with bags of diameter < A\. Let z,y,z,w € V be any
quadruplet of G. Denote by X,Y, Z, W some bags of T con-
taining the vertices z, y, z, w, respectively. Root the decom-
position tree T' at W and let M be the lowest common an-
cestor in T of X, Y, and Z. By the choice of M, the two paths
connecting one of the bags X, Y, Z, say X, to two other bags
Y, Z, pass via M. Denote by 3, the distance in G between
z and a closest to x vertex of the bag M. The distances
By, B=, and (B, are defined analogously. By definition of
the decomposition tree 7', the bag M is a separator in G
for any pair of vertices a,b from the set {z,y, z,w} except
possibly the pair y, z. This shows that da(a,b) > Ba + Bb.
Therefore, the two largest sums among dg(z,y) + da(z, w),
de(z, z) + da(y,w), and dg(z, w) + da(y, z) are larger than
or equal to B; + By + B + Buw =: B. On the other hand,
since the bag M has diameter at most A, we conclude
that dg(a,b) < Ba + B + A for any pair of vertices a,b
from {z,y,z,t}. This shows that each of the three sums
di(2,y) + do (2, w), da (x, 2) + d (y, ), de (@, w) +do(y, 2)
is at most 8 4+ 2A. From the established upper and lower
bounds for the two largest sums, we conclude that they dif-
fer by at most 2\. Since this is true for all quadruplets of
vertices, the graph G is A-hyperbolic. []

PROPOSITION 14. A §-hyperbolic graph G = (V, E) with
n vertices has a tree decomposition of length at most 4\, +1.

PrOOF. Following [20], we define a tree-decomposition T’
derived from the layering-tree I'. Let T' be a copy of I'. For
each node Lj of I" except the root, denote by L;Tl the father

of L; in I' and replace in T' the node L;- by Lj- U X]Z: where
XJ’: are vertices of L;Tl that are adjacent in G to vertices

of L; We claim that T' is a tree decomposition of G. First,
note that I' is a partition of V, thus each vertex v of G is
contained in exactly one node of I'. By construction of T,
v belongs to the corresponding node of 7" and to some of
its children. Therefore, the set of nodes of T" that contain a
given vertex v is a subtree of T. This establishes the third
condition in the definition of a tree-decomposition. Now
consider an edge uv of G. If dg(u, s) = dg(v, s), then u and
v belong to the same node of I' and thus to at least one node
of T. Otherwise, if dg (u, s) # da(v, s), let L and L;l, be the
two nodes of I" that contain u and v. By construction, these
two nodes are adjacent in I' and, therefore, there exists a
node of T that contains both u and v. This establishes that
T is a tree-decomposition of G. It remains to show that the
diameters of bags in the tree-decomposition 7" are at most
4A,, + 1. Pick two vertices v and v that belong to a bag
L; UX;: of this decomposition. By Proposition 8, if u,v € L;
or u,v € X;: - L;,_l, then dg(u,v) < 4A,. Now, suppose
that u € L; and v € X; By construction, v is adjacent to
some vertex of L; yielding that d¢(u,v) < 4A, + 1 in this
case. [
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