(will be inserted by the editor)

Abelian doppelsemigroups

Anatolii V. Zhuchok and Kolja Knauer

Received: ?? September 2018 / Accepted:

Abstract A doppelsemigroup is an algebraic system consisting of a set with two binary associative operations satisfying certain identities. Doppelsemigroups are a generalization of semigroups and they have relationships with such algebraic structures as doppelalgebras, duplexes, interassociative semigroups, restrictive bisemigroups, dimonoids and trioids. This paper is devoted to the study of abelian doppelsemigroups. We show that every abelian doppelsemigroup can be constructed from a left and right commutative semigroup and describe the free abelian doppelsemigroup. We also characterize the least abelian congruence on the free doppelsemigroup, give examples of abelian doppelsemigroups and find conditions under which the operations of an abelian doppelsemigroup coincide.

Keywords doppelsemigroup \cdot abelian doppelsemigroup \cdot free abelian doppelsemigroup \cdot free doppelsemigroup \cdot interassociativity \cdot semigroup \cdot congruence \cdot doppelalgebra

Mathematics Subject Classification (2000) MSC $08B20 \cdot 20M10 \cdot 20M50 \cdot 17A30$

1 Introduction

For semigroups, Drouzy introduced the notion of interassociativity [3]: two semigroups are interassociative if certain axioms relating operations of these semigroups

The paper was written during the research stay of the first author at the University of Aix-Marseille as a part of the French Government fellowship.

Anatolii V. Zhuchok

Department of Algebra and System Analysis, Luhansk Taras Shevchenko National University, Gogol square, 1, 92703 Starobilsk, Ukraine

E-mail: zhuchok.av@gmail.com

Kolja Knauer

Laboratory of Computer Science and Systems, Aix-Marseille University, LIS UMR 7020, Case Courrier 901, 163, avenue de Luminy 13288, Marseille Cedex 9, France

E-mail: kolja.knauer@lis-lab.fr

are satisfied. Interassociativity of semigroups was studied in [1–9, 31]. In this paper, we consider doppelsemigroups which are sets with two binary associative operations satisfying axioms of interassociativity. Doppelalgebras introduced by Richter [15] in the context of algebraic K-theory are linear analogs of doppelsemigroups and commutative dimonoids in the sense of Loday [10,18] are examples of doppelsemigroups. Therefore, doppelsemigroup theory has connections to doppelalgebra theory and dimonoid theory. Trioids were introduced in the paper of Loday and Ronco [11] and were studied in different papers (see, e.g., [29]). These algebras were used in [11] to describe classes of trialgebras. The system of axioms of a trioid includes some axioms of a doppelsemigroup. Bisemigroups were considered in the work of Schein [16] and, in particularly, restrictive bisemigroups were investigated in [17]. The latter algebras have applications in the theory of binary relations [17]. It turns out that the varieties of commutative doppelsemigroups and of commutative bisemigroups coincide. A doppelsemigroup can also be determined by using the notion of a duplex [14]. Free duplexes were constructed in [14]. It should be noted that doppelsemigroups satisfy the hyperidentity of associativity [12, 13]. If operations of a doppelsemigroup coincide, we obtain the notion of a semigroup.

The class of all doppelsemigroups forms a variety. Relatively free doppelsemigroups [26] play a crucial role in studying the variety of doppelsemigroups. This motivates us to investigate explicit constructions of free algebras in the variety of doppelsemigroups. It should be noted that some relatively free doppelsemigroups were studied recently: the constructions of the free (strong) doppelsemigroup, of the free commutative (strong) doppelsemigroup and of the free *n*-nilpotent (strong) doppelsemigroup were presented in [23,27]. The free *n*-dinilpotent (strong) doppelsemigroup was constructed in [22, 27]. In [21], the first author described the free left *n*-dinilpotent doppelsemigroup. The problem is to study abelian doppelsemigroups and construct the free object in the variety of abelian doppelsemigroups. This is the main focus of the present paper.

The paper is organized as follows. In Section 2, we present various notions and results used in the paper, and show that every abelian doppelsemigroup can be constructed from a left and right commutative semigroup. In Section 3, examples of abelian doppelsemigroups are given. In Section 4, we construct the free abelian doppelsemigroup of arbitrary rank and, as consequences, obtain the free abelian doppelsemigroup of rank 1 and the free left and right commutative semigroup. We also establish that the automorphism group of the free abelian doppelsemigroup is isomorphic to the symmetric group. In Section 5, we characterize the least abelian congruence on the free doppelsemigroup. In the final section, some properties of (abelian) doppelsemigroups are established.

2 Preliminaries

Recall that a nonempty set D equipped with two binary associative operations \dashv and \vdash satisfying the axioms

$$(x \dashv y) \vdash z = x \dashv (y \vdash z), \tag{D1}$$

$$(x \vdash y) \dashv z = x \vdash (y \dashv z) \tag{D2}$$

for all $x, y, z \in D$ is called a *doppelsemigroup* [23]. A doppelsemigroup (D, \dashv, \vdash) is called *strong* [27] if it satisfies the axiom

$$x \dashv (y \vdash z) = x \vdash (y \dashv z).$$

A doppelsemigroup is called *commutative* [23] if both its operations are commutative. A nonempty set equipped with two binary associative operations \dashv and \vdash satisfying the axioms (D2) and

$$(x \dashv y) \dashv z = x \dashv (y \vdash z), \tag{D3}$$

$$(x \dashv y) \vdash z = x \vdash (y \vdash z) \tag{D4}$$

is called a *dimonoid* [10]. For more information on dimonoids see [19, 20, 28]. A dimonoid (D, \dashv, \vdash) is called *abelian* [30] if

$$x \dashv y = y \vdash x \tag{1}$$

for all $x, y \in D$. Examples of abelian dimonoids and, in particulary, free abelian dimonoids were presented in [30].

A doppelsemigroup will be called *abelian* if it satisfies the identity (1). The class of all abelian doppelsemigroups forms a subvariety of the variety of doppelsemigroups which does not coincide with the variety of commutative doppelsemigroups. A doppelsemigroup which is free in the variety of abelian doppelsemigroups will be called *the free abelian doppelsemigroup*. If ρ is a congruence on a doppelsemigroup (D, \dashv, \vdash) such that $(D, \dashv, \vdash)/\rho$ is an abelian doppelsemigroup, we say that ρ is an *abelian congruence*.

Recall that a semigroup *S* is called *left* (respectively, right) commutative if it satisfies the identity xya = yxa (respectively, axy = ayx). It is clear that a left commutative semigroup satisfies any identity of the form

$$x_1 x_2 \dots x_n a = x_{1\pi} x_{2\pi} \dots x_{n\pi} a,$$
 (2)

where π is a permutation of $\{1,2,\ldots,n\}$. Dually, a right commutative semigroup satisfies any identity of the form

$$ax_1x_2...x_n = ax_{1\pi}x_{2\pi}...x_{n\pi}, \tag{3}$$

where π is a permutation of $\{1,2,\ldots,n\}$. The class of all left and right commutative semigroups forms a variety. A semigroup which is free in the variety of left and right commutative semigroups will be called *the free left and right commutative semigroup*.

If (D,\dashv) is a semigroup, then D with an operation \vdash , defined by (1), is a semigroup. The semigroup (D,\vdash) is called *dual* to the semigroup (D,\dashv) . If (D,\vdash) is dual to (D,\dashv) , then it is clear that (D,\dashv) is anti-isomorphic to (D,\vdash) . Obviously, a binary relation ρ on a semigroup (D,\dashv) is a congruence if and only if ρ is a congruence on the semigroup (D,\vdash) dual to (D,\dashv) . From here, for an arbitrary abelian doppelsemigroup (D,\dashv,\vdash) , the set of all congruences on (D,\dashv,\vdash) coincides with the set of all congruences on (D,\dashv,\vdash) .

The following two lemmas establish necessary and sufficient conditions under which two dual semigroups give rise to an abelian doppelsemigroup. **Lemma 2.1.** Let (D, \dashv) be an arbitrary semigroup and (D, \vdash) the dual semigroup to (D, \dashv) . Then (D, \dashv, \vdash) is an abelian doppelsemigroup if and only if (D, \dashv) or (D, \vdash) is a left and right commutative semigroup.

Proof. Let (D, \dashv, \vdash) be a doppelsemigroup and (D, \vdash) dual to (D, \dashv) . Then for all $x, y, z \in D$,

$$x \dashv y \dashv z = x \dashv (z \vdash y) = (x \dashv z) \vdash y = y \dashv x \dashv z,$$

$$x \dashv y \dashv z = (y \vdash x) \dashv z = y \vdash (x \dashv z) = x \dashv z \dashv y$$

according to (1) and the axioms of a doppelsemigroup. Hence (D, \dashv) is a left and right commutative semigroup.

Conversely, let (D, \dashv) be a left and right commutative semigroup, (D, \vdash) dual to (D, \dashv) and $x, y, z \in D$. Then

$$x \dashv z \dashv y = x \dashv (y \vdash z), \quad z \dashv x \dashv y = (x \dashv y) \vdash z,$$

 $y \dashv x \dashv z = (x \vdash y) \dashv z, \quad y \dashv z \dashv x = x \vdash (y \dashv z)$

according to (1). Hence, using left commutativity and right commutativity of (D, \dashv) , we obtain (D1) and (D2). So, (D, \dashv, \vdash) is a doppelsemigroup. It is abelian because (1) holds.

The remaining case is considered in a similar way.

Corollary 2.2. Let (D, \dashv) be a left and right commutative semigroup, and (D, \vdash) the dual semigroup to (D, \dashv) . Then (D, \dashv, \vdash) is an abelian doppelsemigroup. Conversely, any abelian doppelsemigroup (D, \dashv, \vdash) can be constructed in this way.

Using Corollary 2.2 and the remark above, we conclude that the set of all congruences on an abelian doppelsemigroup (D, \dashv, \vdash) coincides with the set of all congruences on a left and right commutative semigroup (D, \dashv) . So, the problem of the description of congruences on an abelian doppelsemigroup is reduced to the description of congruences on a left and right commutative semigroup.

By the duality principle, the following lemma can be proved.

Lemma 2.3. Let (D,\vdash) be an arbitrary semigroup and (D,\dashv) the dual semigroup to (D,\vdash) . Then (D,\dashv,\vdash) is an abelian doppelsemigroup if and only if (D,\vdash) or (D,\dashv) is a left and right commutative semigroup.

Corollary 2.4. Let (D,\vdash) be a left and right commutative semigroup, and (D,\dashv) the dual semigroup to (D,\vdash) . Then (D,\dashv,\vdash) is an abelian doppelsemigroup. Conversely, any abelian doppelsemigroup (D,\dashv,\vdash) can be constructed in this way.

As usual, \mathbb{N} denotes the set of all positive integers.

Lemma 2.5. In an abelian doppelsemigroup (D, \dashv, \vdash) , for any n > 1 with $n \in \mathbb{N}$, and any $x_i \in D$, $1 \le i \le n + 1$, and $*_i \in \{\dashv, \vdash\}$, $1 \le j \le n$,

$$x_1 *_1 x_2 *_2 \dots *_n x_{n+1} = x_{1\pi} *_1 x_{2\pi} *_2 \dots *_n x_{(n+1)\pi}$$

= $x_1 \dashv x_2 \dashv \dots \dashv x_{n+1}$,

where π is a permutation of $\{1, 2, ..., n+1\}$.

Proof. Lemma 3.1 from [23] states that in any doppelsemigroup the product of three and more multipliers does not depend on parenthesizing. The proof follows from Lemmas 3.1 [23], 2.1 and the identities (1)–(3).

Corollary 2.6. Every abelian doppelsemigroup is strong.

3 Examples of abelian doppelsemigroups

In this section, we give examples of abelian doppelsemigroups.

Let *X* be an arbitrary set such that |X| > 4 and a, b, x, y, 0 pairwise distinct elements from *X*. Define binary operations \dashv and \vdash on *X* by

$$f \dashv g = \begin{cases} a, & f = x, g = y, \\ b, & f = y, g = x, \\ 0 & \text{otherwise,} \end{cases}$$

$$f \vdash g = \begin{cases} a, & f = y, g = x, \\ b, & f = x, g = y, \\ 0 & \text{otherwise} \end{cases}$$

for all $f, g \in X$.

Proposition 3.1. (X, \dashv, \vdash) is an abelian doppelsemigroup.

Proof. It is immediate to check that (X, \dashv, \vdash) is an abelian doppelsemigroup. \Box

Let *X* be an arbitrary set, |X| > 1 and $F^*[X]$ the free commutative semigroup on *X*. Fix $x, y \in X$ such that $x \neq y$. Define binary operations \dashv and \vdash on

$$K = (F^*[X] \setminus X) \cup \{x, y\} \cup \{(x, y)\}$$

by

$$w \dashv u = \begin{cases} (x, y), & w = x, u = y, \\ wu & \text{otherwise,} \end{cases}$$

$$w \vdash u = \begin{cases} (x, y), & w = y, u = x, \\ wu & \text{otherwise,} \end{cases}$$

$$w \dashv (x, y) = w \vdash (x, y) = wxy,$$

$$(x, y) \dashv w = (x, y) \vdash w = xyw,$$

$$(x, y) \dashv (x, y) = (x, y) \vdash (x, y) = xyxy$$

for all $w, u \in K \setminus \{(x, y)\}$.

Proposition 3.2. (K, \dashv, \vdash) is an abelian doppelsemigroup.

Proof. An immediate verification shows that four identities of a doppelsemigroup hold concerning the operations \neg and \vdash and thus, (K, \neg, \vdash) is a doppelsemigroup. It is clear that the operations \neg and \vdash satisfy (1).

Let X_1 and X_2 be arbitrary nonempty subsets of $\mathbb N$ such that $X_1 \cap X_2 = \emptyset$. Define binary operations \dashv and \vdash on $\mathbb N \cup (X_1 \times X_2)$ by

$$m \dashv k = \begin{cases} (m,k), & m \in X_1, k \in X_2, \\ m+k & \text{otherwise,} \end{cases}$$

$$m \vdash k = \begin{cases} (m,k), & m \in X_2, k \in X_1, \\ m+k & \text{otherwise,} \end{cases}$$

$$m \dashv (x,y) = m \vdash (x,y) = m+x+y,$$

$$(x,y) \dashv m = (x,y) \vdash m = x+y+m,$$

$$(x,y) \dashv (a,b) = (x,y) \vdash (a,b) = x+y+a+b$$

for all $m, k \in \mathbb{N}$ and $(x, y), (a, b) \in X_1 \times X_2$.

Proposition 3.3. $(\mathbb{N} \cup (X_1 \times X_2), \dashv, \vdash)$ *is an abelian doppelsemigroup.*

Proof. The proof follows by a direct verification.

4 Free objects

In this section, we construct the free abelian doppelsemigroup of arbitrary rank and consider separately free abelian doppelsemigroups of rank 1. We also show that the automorphism group of the free abelian doppelsemigroup is isomorphic to the symmetric group and present the free left and right commutative semigroup.

Let X be an arbitrary nonempty set, F[X] the free semigroup on X and $F^*[X]$ the free commutative semigroup on X. The length of an arbitrary word ω in the alphabet X will be denoted by l_{ω} . Consider the sets

$$A_1 = \{ w \in F[X] \mid l_w \in \{1, 2\} \}, \quad A_2 = \{ w \in F^*[X] \mid l_w > 2 \}.$$

Define binary operations \dashv and \vdash on $A_1 \cup A_2$ by

$$w \dashv u = wu, \qquad w \vdash u = uw$$

for all $w, u \in A_1 \cup A_2$. The algebra obtained in this way will be denoted by FAD(X). Note that the semigroup $(A_1 \cup A_2, \vdash)$ is dual to the semigroup $(A_1 \cup A_2, \dashv)$.

Theorem 4.1. FAD(X) is the free abelian doppelsemigroup.

Proof. For any $w, u, \omega \in FAD(X)$ and $*, \circ \in \{ \dashv, \vdash \}$, we have

$$(w*u)\circ\omega=w*(u\circ\omega)=wu\omega,$$

hence FAD(X) is a doppelsemigroup. Moreover, $w \dashv u = wu = u \vdash w$ and so, FAD(X) is abelian.

Let us show that FAD(X) is free in the variety of abelian doppelsemigroups.

Obviously, FAD(X) is generated by X. Let (V, \dashv', \vdash') be an arbitrary abelian doppelsemigroup. Let $\beta: X \to V$ be an arbitrary map. Define a map

$$\phi: FAD(X) \rightarrow (V, \dashv', \vdash')$$

by

$$(x_1x_2...x_n)\phi = x_1\beta \dashv x_2\beta \dashv ... \dashv x_n\beta, \quad x_1,x_2,...,x_n \in X.$$

According to Lemma 2.5 and (1) ϕ is well-defined. We will now show that ϕ is a homomorphism by using Lemma 2.5 and (1) again.

Let $y_1y_2...y_s \in FAD(X)$, where $y_1, y_2, ..., y_s \in X$. Consider the following two cases. If n = s = 1, then

$$(x_1 \vdash y_1)\phi = (y_1x_1)\phi = y_1\beta \dashv x_1\beta = x_1\beta \vdash y_1\beta = x_1\phi \vdash y_1\phi.$$

In the case $n \neq 1$ or $s \neq 1$ we get

$$((x_1x_2...x_n) \vdash (y_1y_2...y_s))\phi = (x_1x_2...x_ny_1y_2...y_s)\phi$$

$$= x_1\beta \dashv x_2\beta \dashv ... \dashv x_n\beta \dashv y_1\beta \dashv y_2\beta \dashv ... \dashv y_s\beta$$

$$= x_1\beta \dashv x_2\beta \dashv ... \dashv x_n\beta \vdash y_1\beta \dashv y_2\beta \dashv ... \dashv y_s\beta$$

$$= (x_1x_2...x_n)\phi \vdash (y_1y_2...y_s)\phi.$$

A direct verification shows that

$$((x_1x_2...x_n) \dashv (y_1y_2...y_s))\phi = (x_1x_2...x_n)\phi \dashv (y_1y_2...y_s)\phi$$

for all $x_1x_2...x_n, y_1y_2...y_s \in FAD(X)$. So, ϕ is a homomorphism.

Clearly, $x\phi = x\beta$ for all $x \in X$. Since X generates FAD(X), the uniqueness of such homomorphism ϕ is obvious. Thus, FAD(X) is free in the variety of abelian doppelsemigroups.

Corollary 4.2. The operations of a singly generated free abelian doppelsemigroup coincide and it is the additive semigroup of positive integers.

Corollary 4.3. $(A_1 \cup A_2, \dashv)$ is the free left and right commutative semigroup.

The free abelian doppelsemigroup FAD(X) is determined uniquely up to isomorphism by cardinality of the set X. Hence the automorphism group of FAD(X) is isomorphic to the symmetric group on X.

5 The least abelian congruence on the free doppelsemigroup

In this section, we characterize the least abelian congruence on the free doppelsemigroup.

The free doppelsemigroup is given in [23]. Recall this construction. We will use notations from Section 4.

Let T be the free monoid on the two-element set $\{a,b\}$ and $\theta \in T$ the empty word. By definition, the length l_{θ} of θ is equal to 0. Define operations \dashv and \vdash on

$$F = \{(w, u) \in F[X] \times T | l_w - l_u = 1\}$$

by

$$(w_1, u_1) \dashv (w_2, u_2) = (w_1 w_2, u_1 a u_2),$$

 $(w_1, u_1) \vdash (w_2, u_2) = (w_1 w_2, u_1 b u_2)$

for all $(w_1, u_1), (w_2, u_2) \in F$. The algebra (F, \dashv, \vdash) is denoted by FDS(X).

Theorem 5.1. ([23], Theorem 3.5) FDS(X) is the free doppelsemigroup.

If $f: D_1 \to D_2$ is a homomorphism of doppelsemigroups, the corresponding congruence on D_1 will be denoted by Δ_f .

Theorem 5.2. Let FDS(X) be the free doppelsemigroup, $(x_1x_2...x_n, u) \in FDS(X)$, $x_1, x_2, ..., x_n \in X$ and FAD(X) the free abelian doppelsemigroup. Then the map

$$\mu : FDS(X) \rightarrow FAD(X)$$
:

$$(x_1x_2...x_n, u) \mapsto (x_1x_2...x_n, u)\mu = \begin{cases} x_2x_1, & n = 2, u = b, \\ x_1x_2...x_n & \text{otherwise} \end{cases}$$

is an epimorphism inducing the least abelian congruence on FDS(X).

Proof. For arbitrary elements $(x_1x_2...x_n, u)$, $(y_1y_2...y_s, t) \in FDS(X)$, where $x_1, x_2, ..., x_n$, $y_1, y_2, ..., y_s \in X$, we consider the following two cases.

Case 1 : n = s = 1. Then

$$((x_1, \theta) \dashv (y_1, \theta))\mu = (x_1y_1, a)\mu$$

= $x_1y_1 = x_1 \dashv y_1 = (x_1, \theta)\mu \dashv (y_1, \theta)\mu$,
 $((x_1, \theta) \vdash (y_1, \theta))\mu = (x_1y_1, b)\mu$
= $y_1x_1 = x_1 \vdash y_1 = (x_1, \theta)\mu \vdash (y_1, \theta)\mu$.

Case 2 : $n \neq 1$ or $s \neq 1$. Then

$$((x_1x_2...x_n,u) \dashv (y_1y_2...y_s,t))\mu = (x_1x_2...x_ny_1y_2...y_s,uat)\mu$$

= $x_1x_2...x_ny_1y_2...y_s = (x_1x_2...x_n,u)\mu \dashv (y_1y_2...y_s,t)\mu$,
 $((x_1x_2...x_n,u) \vdash (y_1y_2...y_s,t))\mu = (x_1x_2...x_ny_1y_2...y_s,ubt)\mu$
= $x_1x_2...x_ny_1y_2...y_s = (x_1x_2...x_n,u)\mu \vdash (y_1y_2...y_s,t)\mu$.

Thus, μ is a homomorphism.

For arbitrary $a_1a_2...a_n \in FAD(X)$ there exists $(a_1a_2...a_n, a^{n-1}) \in FDS(X)$ such that

$$(a_1a_2\ldots a_n,a^{n-1})\mu=a_1a_2\ldots a_n,$$

where $a^0 = \theta$. So, μ is surjective. By Theorem 4.1, FAD(X) is the free abelian doppelsemigroup. Then Δ_{μ} is the least abelian congruence on FDS(X).

6 Some properties

In this section, we show that the variety of abelian doppelsemigroups is a subclass of the variety of abelian dimonoids, give conditions under which the operations of an abelian doppelsemigroup coincide and establish that the varieties of commutative doppelsemigroups and of commutative bisemigroups coincide.

A dimonoid (D, \dashv, \vdash) is a *left zero and right zero dimonoid* [24] provided that (D, \dashv) is a left zero semigroup, and (D, \vdash) is a right zero semigroup.

Lemma 6.1. Every abelian doppelsemigroup is an abelian dimonoid. The converse statement is not true in general.

Proof. We need to prove that in an abelian doppelsemigrooup (D, \dashv, \vdash) the identities (D3) and (D4) hold. For all $x, y, z \in D$, we have

$$(x \dashv y) \dashv z = x \dashv (y \vdash z),$$

$$x \vdash (y \vdash z) = (x \dashv y) \vdash z$$

by Lemma 2.5.

Consider a left zero and right zero dimonoid (D, \dashv, \vdash) . Obviously, it is abelian. Moreover, if |D| > 1, $x, y, z \in D$ and $x \neq z$, then $(x \dashv y) \vdash z = z \neq x = x \dashv (y \vdash z)$. \square

Corollary 6.2. The variety of abelian doppelsemigroups is a subclass of the variety of abelian dimonoids.

A semigroup S is called *separative* if for any $s,t \in S$, $s^2 = st = t^2$ implies s = t. A semigroup S is called a *left cancellative* semigroup if for any $a,b,c \in S$, ca = cb implies a = b. Right cancellative semigroups are defined dually. A semigroup S is called a *two-sided cancellative* semigroup if it is a left cancellative semigroup and a right cancellative semigroup. A semigroup S is called *globally idempotent* if $S^2 = S$. A semigroup, which satisfies two quasiidentities

$$x^2 = xy$$
, $y^2 = yx \Rightarrow x = y$,

$$x^2 = vx$$
, $v^2 = xv \Rightarrow x = v$,

is called weakly cancellative.

The following lemma establishes necessary and sufficient conditions under which the operations of two dual semigroups coincide.

Lemma 6.3. Let (D, \dashv) be an arbitrary semigroup and (D, \vdash) the dual semigroup to (D, \dashv) . The operations of (D, \dashv, \vdash) coincide if and only if \dashv is commutative.

Proof. Let $\dashv = \vdash$. Then, using (1), we get $x \dashv y = y \vdash x = y \dashv x$ for all $x, y \in D$ and so, \dashv is commutative.

Conversely, let \dashv be commutative. Since (D, \vdash) is the dual semigroup to (D, \dashv) , we have $x \dashv y = y \dashv x = x \vdash y$ for all $x, y \in D$. Thus, $\dashv = \vdash$.

Corollary 6.4. The operations of an abelian doppelsemigroup (D, \dashv, \vdash) coincide if (D, \dashv) or (D, \vdash) is

- (i) a commutative semigroup,
- (ii) an idempotent semigroup,
- (iii) a separative semigroup,
- (iv) a globally idempotent semigroup,
- (v) a left (right, two-sided) cancellative semigroup,
- (vi) a weakly cancellative semigroup, or
- (vii) a monoid.

Proof. Let (D, \dashv, \vdash) be an abelian doppelsemigroup. We prove all cases for (D, \dashv) . The remaining cases are considered in a similar way.

- (i) Obviously, in (D, \dashv, \vdash) , the operation \dashv is commutative if and only if \vdash is commutative. Hence, by Lemma 6.3, \dashv = \vdash .
 - (ii) By Lemma 2.5,

$$x \dashv y \dashv z = y \dashv x \dashv z \tag{4}$$

for all $x, y, z \in D$. If y = z, then, using the idempotent property of \dashv and Lemma 2.5, we obtain $x \dashv y = y \dashv x$ for all $x, y \in D$. Hence, according to Lemma 6.3, $\dashv = \vdash$.

(iii) Let $x, y \in D$. Assume that $a = x \dashv y$, $b = y \dashv x$. Using Lemma 2.5, we have

$$a^{2} = (x \dashv y) \dashv (x \dashv y) = (x \dashv y)^{2},$$
 (5)

$$a \dashv b = (x \dashv y) \dashv (y \dashv x) = (x \dashv y)^{2},$$
 (6)

$$b^{2} = (y \dashv x) \dashv (y \dashv x) = (x \dashv y)^{2}.$$
 (7)

Since the semigroup (D, \dashv) is separative, $a^2 = a \dashv b = b^2$ implies a = b. Thus, \dashv is commutative and by Lemma 6.3, \dashv = \vdash .

(iv) Let $x, y \in D$. By global idempotentity of (D, \dashv) , $y = y_1 \dashv y_2$ for some $y_1, y_2 \in D$. Then

$$x \dashv y = x \dashv (y_1 \dashv y_2) = (y_1 \dashv y_2) \dashv x = y \dashv x$$

according to Lemma 2.5. By virtue of Lemma 6.3, $\dashv=\vdash$.

(v) For all $x, y, z \in D$, using Lemma 2.5, we have

$$z \dashv x \dashv y = z \dashv y \dashv x$$
.

Hence, by left cancellativity of (D, \dashv) , we obtain $x \dashv y = y \dashv x$ for all $x, y \in D$ and so, $\dashv = \vdash$ by Lemma 6.3.

The case of right cancellativity is proved in a similar way. The proof for the case of two-sided cancellativity follows from the above.

(vi) For arbitrary elements $x, y \in D$ assume that $a = x \dashv y$ and $b = y \dashv x$. By virtue of Lemma 2.5, we obtain (5), (6), (7) and

$$b \dashv a = (y \dashv x) \dashv (x \dashv y) = (x \dashv y)^2$$
.

Due to weak cancellativity of (D, \dashv) , $a^2 = a \dashv b$, $b^2 = b \dashv a$ implies a = b. Thus, \dashv is commutative. Then, by Lemma 6.3, \dashv = \vdash .

(vii) Let (D, \dashv) be a monoid with the identity element e. For all $x, y, z \in D$, we have (4) according to Lemma 2.5. If we substitute z = e into (4), we obtain $x \dashv y = y \dashv x$ for all $x, y \in D$. From here $\dashv = \vdash$ by Lemma 6.3.

At the end of the paper we establish a relation between doppelsemigroups and bisemigroups [16].

Recall that a nonempty set B with the operations \dashv and \vdash is called a *bisemigroup* if (B,\dashv) and (B,\vdash) are semigroups and (D2) holds. Restrictive bisemigroups were studied by Schein (see, e.g., [17]) and they have applications in the theory of binary relations. A bisemigroup (B,\dashv,\vdash) will be called *commutative* if the operations \dashv and \vdash are commutative.

It is not hard to prove the following lemma.

Lemma 6.5. The varieties of commutative doppelsemigroups and of commutative bisemigroups coincide.

Observe that doppelalgebras are linear analogs of doppelsemigroups, therefore all results obtained for doppelsemigroups hold for doppelalgebras.

References

- 1. Boyd, S. J., Gould, M.: Interassociativity and isomorphism. Pure Math. Appl. 10, no. 1, 23–30 (1999)
- Boyd, S.J., Gould, M., Nelson, A.W.: Interassociativity of semigroups. Proceedings of the Tennessee Topology Conference, Nashville, TN, USA, 1996. Singapore: World Scientific, 33–51 (1997)
- 3. Drouzy, M.: La structuration des ensembles de semigroupes d'ordre 2, 3 et 4 par la relation d'interassociativité. Manuscript (1986)
- 4. Givens, B.N., Linton, K., Rosin, A., Dishman, L.: Interassociates of the free commutative semigroup on *n* generators. Semigroup Forum **74**, 370–378 (2007)
- Givens, B.N., Rosin, A., Linton, K.: Interassociates of the bicyclic semigroup. Semigroup Forum 94, 104–122 (2017). doi:10.1007/s00233-016-9794-9
- Gorbatkov, A.B.: Interassociates of a free semigroup on two generators. Mat. Stud. 41, 139–145 (2014)
- Gorbatkov, A.B.: Interassociates of the free commutative semigroup. Sib. Math. J. 54, no. 3, 441–445 (2013)
- 8. Gould, M., Linton, K.A., Nelson, A.W.: Interassociates of monogenic semigroups. Semigroup Forum 68, 186–201 (2004)
- Gould, M., Richardson, R.E.: Translational hulls of polynomially related semigroups. Czechoslovak Math. J. 33, no. 1, 95–100 (1983)
- Loday, J.-L.: Dialgebras. In: Dialgebras and related operads: Lect. Notes Math., vol. 1763, Berlin: Springer-Verlag, pp. 7–66 (2001)
- Loday, J.-L., Ronco, M.O.: Trialgebras and families of polytopes. Contemp. Math. 346, 369–398 (2004)
- Movsisyan, Yu.M.: Introduction to the Theory of Algebras with Hyperidentities. Yerevan State University Press, Yerevan (1986) (in Russian)
- 13. Movsisyan, Yu.M.: Hyperidentitties in algebras and varieties. Russ. Math. Surveys 53 (1), 57–108 (1998)
- 14. Pirashvili, T.: Sets with two associative operations. Cent. Eur. J. Math. 2, 169–183 (2003)
- 15. Richter, B.: Dialgebren, Doppelalgebren und ihre Homologie. Diplomarbeit, Universitat Bonn. (1997). Available at https://www.math.uni-hamburg.de/home/richter/publications.html

_

- Schein, B. M.: Restrictive semigroups and bisemigroups. Technical Report. University of Arkansas, Fayetteville, Arkansas, USA, 1–23 (1989)
- 17. Schein, B.M.: Restrictive bisemigroups. Izv. Vyssh. Uchebn. Zaved. Mat. 1 (44), 168–179 (1965) (in Russian)
- 18. Zhuchok, A.V.: Commutative dimonoids. Algebra and Discrete Math. 2, 116-127 (2009)
- 19. Zhuchok, A.V.: Dimonoids and bar-units. Sib. Math. J. 56, no. 5, 827–840 (2015)
- Zhuchok, A.V.: Elements of dimonoid theory. Mathematics and its Applications, vol. 98, 304 p. Proceedings of Institute of Mathematics of NAS of Ukraine, Monograph, Kiev (2014) (in Ukrainian)
- Zhuchok, A.V.: Free left n-dinilpotent doppelsemigroups. Commun. Algebra 45, no. 11, 4960–4970 (2017). doi: 10.1080/00927872.2017.1287274
- 22. Zhuchok, A.V., Demko, M.: Free *n*-dinilpotent doppelsemigroups. Algebra and Discrete Math. **22**, no. 2, 304–316 (2016)
- Zhuchok, A.V.: Free products of doppelsemigroups. Algebra Univers. 77, no. 3, 361–374 (2017). doi: 10.1007/s00012-017-0431-6
- Zhuchok, A.V.: Free rectangular dibands and free dimonoids. Algebra Discrete Math. 11, no. 2, 92–111 (2011)
- 25. Zhuchok, A.V.: Group congruences on trioids. Proc. Inst. Applied Math. and Mech 27, 148–158 (2013) (in Ukrainian)
- Zhuchok, A.V.: Relatively free doppelsemigroups. Monograph series Lectures in Pure and Applied Mathematics. Germany, Potsdam: Potsdam University Press. 5, 86 p. (2018)
- Zhuchok, A.V.: Structure of free strong doppelsemigroups. Commun. Algebra. 46, no. 8, 3262–3279 (2018). doi: 10.1080/00927872.2017.1407422
- Zhuchok, A.V.: Structure of relatively free dimonoids. Commun. Algebra 45, no. 4, 1639–1656 (2017). doi: 10.1080/00927872.2016.1222404
- Zhuchok, A.V.: Trioids. Asian-European J. Math. 8, no. 4, 1550089 (23 p.) (2015). doi: 10.1142/S1793557115500898
- 30. Zhuchok, Y.V.: Free abelian dimonoids. Algebra and Discrete Math. 20, no. 2, 330-342 (2015)
- 31. Zupnik, D.: On interassociativity and related questions. Aequationes Math. 6, no. 2, 141–148 (1971)